中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Visual Superordinate Abstraction for Robust Concept Learning

文献类型:期刊论文

作者Qi Zheng3; Chao-Yue Wang1; Dadong Wang2; a-Cheng Tao1,3
刊名Machine Intelligence Research
出版日期2023
卷号20期号:1页码:79-91
关键词Concept learning visual question answering weakly-supervised learning multi-modal learning curriculum learning
ISSN号2731-538X
DOI10.1007/s11633-022-1360-1
英文摘要Concept learning constructs visual representations that are connected to linguistic semantics, which is fundamental to vision-language tasks. Although promising progress has been made, existing concept learners are still vulnerable to attribute perturbations and out-of-distribution compositions during inference. We ascribe the bottleneck to a failure to explore the intrinsic semantic hierarchy of visual concepts, e.g., {red, blue,···} “color” subspace yet cube “shape”. In this paper, we propose a visual superordinate abstraction framework for explicitly modeling semantic-aware visual subspaces (i.e., visual superordinates). With only natural visual question answering data, our model first acquires the semantic hierarchy from a linguistic view and then explores mutually exclusive visual superordinates under the guidance of linguistic hierarchy. In addition, a quasi-center visual concept clustering and superordinate shortcut learning schemes are proposed to enhance the discrimination and independence of concepts within each visual superordinate. Experiments demonstrate the superiority of the proposed framework under diverse settings, which increases the overall answering accuracy relatively by 7.5% for reasoning with perturbations and 15.6% for compositional generalization tests.
源URL[http://ir.ia.ac.cn/handle/173211/55967]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.JD Explore Academy, Beijing 100176, China
2.DATA61, Commonwealth Scientific and Industrial Research Organisation, Sydney 2122, Australia
3.University of Sydney, Sydney 2008, Australia
推荐引用方式
GB/T 7714
Qi Zheng,Chao-Yue Wang,Dadong Wang,et al. Visual Superordinate Abstraction for Robust Concept Learning[J]. Machine Intelligence Research,2023,20(1):79-91.
APA Qi Zheng,Chao-Yue Wang,Dadong Wang,&a-Cheng Tao.(2023).Visual Superordinate Abstraction for Robust Concept Learning.Machine Intelligence Research,20(1),79-91.
MLA Qi Zheng,et al."Visual Superordinate Abstraction for Robust Concept Learning".Machine Intelligence Research 20.1(2023):79-91.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。