Deep Gradient Learning for Efficient Camouflaged Object Detection
文献类型:期刊论文
作者 | Ge-Peng Ji1; Deng-Ping Fan2; Yu-Cheng Chou1; Dengxin Dai2; Alexander Liniger2; Luc Van Gool2 |
刊名 | Machine Intelligence Research
![]() |
出版日期 | 2023 |
卷号 | 20期号:1页码:92-108 |
关键词 | Camouflaged object detection (COD) object gradient soft grouping efficient model image segmentation |
ISSN号 | 2731-538X |
DOI | 10.1007/s11633-022-1365-9 |
英文摘要 | This paper introduces deep gradient network (DGNet), a novel deep framework that exploits object gradient supervision for camouflaged object detection (COD). It decouples the task into two connected branches, i.e., a context and a texture encoder. The essential connection is the gradient-induced transition, representing a soft grouping between context and texture features. Benefiting from the simple but efficient framework, DGNet outperforms existing state-of-the-art COD models by a large margin. Notably, our efficient version, DGNet-S, runs in real-time (80fps) and achieves comparable results to the cutting-edge model JCSOD-CVPR21 with only 6.82% parameters. The application results also show that the proposed DGNet performs well in the polyp segmentation, defect detection, and transparent object segmentation tasks. The code will be made available at https://github.com/GewelsJI/DGNet. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/55968] ![]() |
专题 | 自动化研究所_学术期刊_International Journal of Automation and Computing |
作者单位 | 1.School of Computer Science, Wuhan University, Wuhan 430072, China 2.Computer Vision Laboratory, ETH Zürich, Zürich 8092, Switzerland |
推荐引用方式 GB/T 7714 | Ge-Peng Ji,Deng-Ping Fan,Yu-Cheng Chou,et al. Deep Gradient Learning for Efficient Camouflaged Object Detection[J]. Machine Intelligence Research,2023,20(1):92-108. |
APA | Ge-Peng Ji,Deng-Ping Fan,Yu-Cheng Chou,Dengxin Dai,Alexander Liniger,&Luc Van Gool.(2023).Deep Gradient Learning for Efficient Camouflaged Object Detection.Machine Intelligence Research,20(1),92-108. |
MLA | Ge-Peng Ji,et al."Deep Gradient Learning for Efficient Camouflaged Object Detection".Machine Intelligence Research 20.1(2023):92-108. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。