中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Gradient Learning for Efficient Camouflaged Object Detection

文献类型:期刊论文

作者Ge-Peng Ji1; Deng-Ping Fan2; Yu-Cheng Chou1; Dengxin Dai2; Alexander Liniger2; Luc Van Gool2
刊名Machine Intelligence Research
出版日期2023
卷号20期号:1页码:92-108
关键词Camouflaged object detection (COD) object gradient soft grouping efficient model image segmentation
ISSN号2731-538X
DOI10.1007/s11633-022-1365-9
英文摘要

This paper introduces deep gradient network (DGNet), a novel deep framework that exploits object gradient supervision for camouflaged object detection (COD). It decouples the task into two connected branches, i.e., a context and a texture encoder. The essential connection is the gradient-induced transition, representing a soft grouping between context and texture features. Benefiting from the simple but efficient framework, DGNet outperforms existing state-of-the-art COD models by a large margin. Notably, our efficient version, DGNet-S, runs in real-time (80fps) and achieves comparable results to the cutting-edge model JCSOD-CVPR21 with only 6.82% parameters. The application results also show that the proposed DGNet performs well in the polyp segmentation, defect detection, and transparent object segmentation tasks. The code will be made available at https://github.com/GewelsJI/DGNet.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/55968]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.School of Computer Science, Wuhan University, Wuhan 430072, China
2.Computer Vision Laboratory, ETH Zürich, Zürich 8092, Switzerland
推荐引用方式
GB/T 7714
Ge-Peng Ji,Deng-Ping Fan,Yu-Cheng Chou,et al. Deep Gradient Learning for Efficient Camouflaged Object Detection[J]. Machine Intelligence Research,2023,20(1):92-108.
APA Ge-Peng Ji,Deng-Ping Fan,Yu-Cheng Chou,Dengxin Dai,Alexander Liniger,&Luc Van Gool.(2023).Deep Gradient Learning for Efficient Camouflaged Object Detection.Machine Intelligence Research,20(1),92-108.
MLA Ge-Peng Ji,et al."Deep Gradient Learning for Efficient Camouflaged Object Detection".Machine Intelligence Research 20.1(2023):92-108.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。