Mitigating Spurious Correlations for Self-supervised Recommendation
文献类型:期刊论文
作者 | Xin-Yu Lin2; Yi-Yan Xu1; Wen-Jie Wang2; Yang Zhang1![]() |
刊名 | Machine Intelligence Research
![]() |
出版日期 | 2023 |
卷号 | 20期号:2页码:263-275 |
关键词 | Self-supervised recommendation spurious correlations spurious features invariant feature learning contrastive learning |
ISSN号 | 2731-538X |
DOI | 10.1007/s11633-022-1374-8 |
英文摘要 | Recent years have witnessed the great success of self-supervised learning (SSL) in recommendation systems. However, SSL recommender models are likely to suffer from spurious correlations, leading to poor generalization. To mitigate spurious correlations, existing work usually pursues ID-based SSL recommendation or utilizes feature engineering to identify spurious features. Nevertheless, ID based SSL approaches sacrifice the positive impact of invariant features, while feature engineering methods require high-cost human labeling. To address the problems, we aim to automatically mitigate the effect of spurious correlations. This objective requires to 1) automatically mask spurious features without supervision, and 2) block the negative effect transmission from spurious features to other features during SSL. To handle the two challenges, we propose an invariant feature learning framework, which first divides user-item interactions into multiple environments with distribution shifts and then learns a feature mask mechanism to capture invariant features across environments. Based on the mask mechanism, we can remove the spurious features for robust predictions and block the negative effect transmission via mask-guided feature augmentation. Extensive experiments on two datasets demonstrate the effectiveness of the proposed framework in mitigating spurious correlations and improving the generalization abilities of SSL models. |
源URL | [http://ir.ia.ac.cn/handle/173211/55979] ![]() |
专题 | 自动化研究所_学术期刊_International Journal of Automation and Computing |
作者单位 | 1.University of Science and Technology of China, Hefei 230026, China 2.National University of Singapore, Queenstown 119077, Singapore |
推荐引用方式 GB/T 7714 | Xin-Yu Lin,Yi-Yan Xu,Wen-Jie Wang,et al. Mitigating Spurious Correlations for Self-supervised Recommendation[J]. Machine Intelligence Research,2023,20(2):263-275. |
APA | Xin-Yu Lin,Yi-Yan Xu,Wen-Jie Wang,Yang Zhang,&Fu-Li Feng.(2023).Mitigating Spurious Correlations for Self-supervised Recommendation.Machine Intelligence Research,20(2),263-275. |
MLA | Xin-Yu Lin,et al."Mitigating Spurious Correlations for Self-supervised Recommendation".Machine Intelligence Research 20.2(2023):263-275. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。