中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multimodal Fusion of Brain Imaging Data: Methods and Applications

文献类型:期刊论文

作者Na Luo2; Weiyang Shi2; Zhengyi Yang2; Ming Song2; Tianzi Jiang1,2,3,4
刊名Machine Intelligence Research
出版日期2024
卷号21期号:1页码:136-152
关键词Multimodal fusion, supervised learning, unsupervised learning, brain atlas, cognition, brain disorders
ISSN号2731-538X
DOI10.1007/s11633-023-1442-8
英文摘要

Neuroimaging data typically include multiple modalities, such as structural or functional magnetic resonance imaging, diffusion tensor imaging, and positron emission tomography, which provide multiple views for observing and analyzing the brain. To leverage the complementary representations of different modalities, multimodal fusion is consequently needed to dig out both inter-modality and intra-modality information. With the exploited rich information, it is becoming popular to combine multiple modality data to explore the structural and functional characteristics of the brain in both health and disease status. In this paper, we first review a wide spectrum of advanced machine learning methodologies for fusing multimodal brain imaging data, broadly categorized into unsupervised and supervised learning strategies. Followed by this, some representative applications are discussed, including how they help to understand the brain arealization, how they improve the prediction of behavioral phenotypes and brain aging, and how they accelerate the biomarker exploration of brain diseases. Finally, we discuss some exciting emerging trends and important future directions. Collectively, we intend to offer a comprehensive overview of brain imaging fusion methods and their successful applications, along with the challenges imposed by multi-scale and big data, which arises an urgent demand on developing new models and platforms.

源URL[http://ir.ia.ac.cn/handle/173211/56029]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2.Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
3.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
4.Research Center for Augmented Intelligence, Zhejiang Laboratory, Hangzhou 311100, China
推荐引用方式
GB/T 7714
Na Luo,Weiyang Shi,Zhengyi Yang,et al. Multimodal Fusion of Brain Imaging Data: Methods and Applications[J]. Machine Intelligence Research,2024,21(1):136-152.
APA Na Luo,Weiyang Shi,Zhengyi Yang,Ming Song,&Tianzi Jiang.(2024).Multimodal Fusion of Brain Imaging Data: Methods and Applications.Machine Intelligence Research,21(1),136-152.
MLA Na Luo,et al."Multimodal Fusion of Brain Imaging Data: Methods and Applications".Machine Intelligence Research 21.1(2024):136-152.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。