安全强化学习综述
文献类型:期刊论文
作者 | 王雪松; 王荣荣; 程玉虎 |
刊名 | 自动化学报
![]() |
出版日期 | 2023 |
卷号 | 49期号:9页码:1813-1835 |
关键词 | 安全强化学习 约束马尔科夫决策过程 学习过程 学习目标 离线强化学习 |
ISSN号 | 0254-4156 |
DOI | 10.16383/j.aas.c220631 |
英文摘要 | 强化学习(Reinforcement learning, RL)在围棋、视频游戏、导航、推荐系统等领域均取得了巨大成功.然而,许多强化学习算法仍然无法直接移植到真实物理环境中.这是因为在模拟场景下智能体能以不断试错的方式与环境进行交互,从而学习最优策略.但考虑到安全因素,很多现实世界的应用则要求限制智能体的随机探索行为.因此,安全问题成为强化学习从模拟到现实的一个重要挑战.近年来,许多研究致力于开发安全强化学习(Safe reinforcement learning, SRL)算法,在确保系统性能的同时满足安全约束.本文对现有的安全强化学习算法进行全面综述,将其归为三类:修改学习过程、修改学习目标、离线强化学习,并介绍了5大基准测试平台:Safety Gym、safe-control-gym、SafeRL-Kit、D4RL、NeoRL.最后总结了安全强化学习在自动驾驶、机器人控制、工业过程控制、电力系统优化和医疗健康领域中的应用,并给出结论与展望. |
源URL | [http://ir.ia.ac.cn/handle/173211/56062] ![]() |
专题 | 自动化研究所_学术期刊_自动化学报 |
推荐引用方式 GB/T 7714 | 王雪松,王荣荣,程玉虎. 安全强化学习综述[J]. 自动化学报,2023,49(9):1813-1835. |
APA | 王雪松,王荣荣,&程玉虎.(2023).安全强化学习综述.自动化学报,49(9),1813-1835. |
MLA | 王雪松,et al."安全强化学习综述".自动化学报 49.9(2023):1813-1835. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。