中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于内容特征和风格特征融合的单幅图像去雾网络

文献类型:期刊论文

作者杨爱萍; 刘瑾; 邢金娜; 李晓晓; 何宇清
刊名自动化学报
出版日期2023
卷号49期号:4页码:769-777
关键词图像去雾 卷积神经网络 特征融合 颜色保持 注意力通道加权
ISSN号0254-4156
DOI10.16383/j.aas.c200217
英文摘要基于深度学习的方法在去雾领域已经取得了很大进展,但仍然存在去雾不彻底和颜色失真等问题.针对这些问题,本文提出一种基于内容特征和风格特征相融合的单幅图像去雾网络.所提网络包括特征提取、特征融合和图像复原三个子网络,其中特征提取网络包括内容特征提取模块和风格特征提取模块,分别用于学习图像内容和图像风格以实现去雾的同时可较好地保持原始图像的色彩特征.在特征融合子网络中,引入注意力机制对内容特征提取模块输出的特征图进行通道加权实现对图像主要特征的学习,并将加权后的内容特征图与风格特征图通过卷积操作相融合.最后,图像复原模块对融合后的特征图进行非线性映射得到去雾图像.与已有方法相比,所提网络对合成图像和真实图像均可取得理想的去雾结果,同时可有效避免去雾后的颜色失真问题.
源URL[http://ir.ia.ac.cn/handle/173211/56166]  
专题自动化研究所_学术期刊_自动化学报
推荐引用方式
GB/T 7714
杨爱萍,刘瑾,邢金娜,等. 基于内容特征和风格特征融合的单幅图像去雾网络[J]. 自动化学报,2023,49(4):769-777.
APA 杨爱萍,刘瑾,邢金娜,李晓晓,&何宇清.(2023).基于内容特征和风格特征融合的单幅图像去雾网络.自动化学报,49(4),769-777.
MLA 杨爱萍,et al."基于内容特征和风格特征融合的单幅图像去雾网络".自动化学报 49.4(2023):769-777.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。