Generalized Embedding Machines for Recommender Systems
文献类型:期刊论文
作者 | Enneng Yang1; Xin Xin2; Li Shen3; Yudong Luo1; Guibing Guo1 |
刊名 | Machine Intelligence Research
![]() |
出版日期 | 2024 |
卷号 | 21期号:3页码:571-584 |
关键词 | Feature interactions, high-order interaction, factorization machine (FM), recommender system, graph neural network (GNN) |
ISSN号 | 2731-538X |
DOI | 10.1007/s11633-022-1412-6 |
英文摘要 | Factorization machine (FM) is an effective model for feature-based recommendation that utilizes inner products to capture second-order feature interactions. However, one of the major drawbacks of FM is that it cannot capture complex high-order interaction signals. A common solution is to change the interaction function, such as stacking deep neural networks on the top level of FM. In this work, we propose an alternative approach to model high-order interaction signals at the embedding level, namely generalized embedding machine (GEM). The embedding used in GEM encodes not only the information from the feature itself but also the information from other correlated features. Under such a situation, the embedding becomes high-order. Then we can incorporate GEM with FM and even its advanced variants to perform feature interactions. More specifically, in this paper, we utilize graph convolution networks (GCN) to generate high-order embeddings. We integrate GEM with several FM-based models and conduct extensive experiments on two real-world datasets. The results demonstrate significant improvement of GEM over the corresponding baselines. |
源URL | [http://ir.ia.ac.cn/handle/173211/56483] ![]() |
专题 | 自动化研究所_学术期刊_International Journal of Automation and Computing |
作者单位 | 1.Software College, Northeastern University, Shenyang 110000, China 2.School of Computer Science and Technology, Shandong University, Qingdao 266000, China 3.JD Explore Academy, JD Explore Academy, Beijing 100000, China |
推荐引用方式 GB/T 7714 | Enneng Yang,Xin Xin,Li Shen,et al. Generalized Embedding Machines for Recommender Systems[J]. Machine Intelligence Research,2024,21(3):571-584. |
APA | Enneng Yang,Xin Xin,Li Shen,Yudong Luo,&Guibing Guo.(2024).Generalized Embedding Machines for Recommender Systems.Machine Intelligence Research,21(3),571-584. |
MLA | Enneng Yang,et al."Generalized Embedding Machines for Recommender Systems".Machine Intelligence Research 21.3(2024):571-584. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。