中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于对比表征联邦学习的宫颈癌淋巴结转移预测研究

文献类型:学位论文

作者刘圣圆
答辩日期2024-05
文献子类硕士
关键词宫颈癌 淋巴结转移 影像组学 深度学习 联邦学习
英文摘要

宫颈癌是一种女性中常见的恶性肿瘤,淋巴结转移为其主要的转移途径,早期发现和及时治疗淋巴结转移对于提高患者的存活率至关重要。目前,宫颈癌的影像学检查是术前无创评估患者淋巴结状态的常用方法,然而该方法诊断过程费时费力,并依赖于临床医生的诊断经验,容易出现主观判断的误差。近年来,深度学习等技术的发展为宫颈癌淋巴结转移的术前诊断带来了新的方法和思路。

在宫颈癌淋巴结转移诊断任务上,虽然已有一些研究表明深度学习技术的有效性,但该方式受到数据安全性和隐私保护的限制,获取大规模数据集仍然存在困难,这些研究多数基于单一中心的本地数据集或集中型的数据集来进行训练和验证。联邦学习作为一种新兴的分布式学习方法,将模型训练过程分布在多个中心上,并在数据保持分离的同时进行模型聚合,逐渐成为解决数据隐私和安全性问题的主流方案。目前,在宫颈癌淋巴结转移预测领域还没有联邦学习的相关研究,同时患者影像数据通常来自不同中心,可能使用不同的影像采集设备和采集参数,如何缓解多中心数据间存在的非独立同分布问题对联邦学习训练造成的影响,也是亟需解决的问题。

针对上述问题,本文融合影像组学和深度学习方法,提出了基于多任务学习的宫颈癌淋巴结转移预测网络,实现对宫颈癌计算机断层扫描(CT)影像中显著性特征的有效提取。同时,为解决数据安全和隐私保护问题,本文提出了基于对比表征联邦学习的宫颈癌淋巴结转移预测框架,并在多中心宫颈癌数据集上验证其效果。结果发现,该框架能够提高模型预测准确性,并增强对多中心非独立同分布数据的适应性和鲁棒性。具体来说,本文的研究工作主要包括以下三个部分:

(1)本研究首先收集了来自国内八家医院的1033例宫颈癌患者的CT影像数据与临床资料,并由临床医生对宫颈癌肿瘤病灶区域进行标注,构建了一个较大规模的多中心数据集,并通过灰度化、归一化及数据增强等数据预处理方法降低数据中存在的不均衡性和噪声,获得高质量、标准化的数据集。并且,我们分析了该多中心数据集中存在的非独立同分布问题,探讨了该问题对模型性能的影响,为后续研究提供了数据基础。

(2)针对宫颈癌淋巴结转移预后预测困难的临床问题和现有模型效果不佳的技术问题,本研究提出了一种基于多任务学习的宫颈癌淋巴结转移预测网络MRCNet。该模型基于U-Net网络结构,通过引入多任务损失函数以全面挖掘淋巴结转移状态和肿瘤病灶ROI区域之间的内在关联。此外,本研究设计了交叉注意力模块融合空间和时间维度特征,增强模型对特征的感知能力,从而更准确地预测淋巴结转移情况。实验结果显示,多任务的MRCNet模型相较于单任务模型准确率提升了4.58%,与人工预定义特征的影像组学模型相比提升了11.28%,验证了该模型在处理淋巴结转移预测任务中的优越性和可行性。

(3)针对宫颈癌集中式学习方法存在的数据安全和隐私保护问题以及多中心数据集存在的非独立同分布问题,本研究提出了基于对比表征联邦学习的宫颈癌淋巴结转移预测框架PCRFed。在联邦平均策略的基础上,该框架对模型进行私有层划分。这种个性化学习方法有助于提高模型在不同数据中心间的泛化性能,尤其在处理样本稀缺的数据中心时优势更为显著。同时,提出了一种加权对比表征损失函数,能够根据各中心数据集的大小自适应调整损失函数的权重,从而帮助模型更好地学习数据中心之间的差异性信息,并充分利用全局信息来引导模型的收敛过程。实验结果表明,结合以上两种改进,PCRFed的预测效果(AUC:0.6705)能够优于本地学习策略(AUC:0.6216)和集中学习策略 (AUC:0.6690)。这种基于对比表征的联邦学习算法能够更好地适应小数据量、难分类的数据中心,提高了模型在不同数据中心间的泛化性能。

综上所述,本文围绕宫颈癌淋巴结转移预测任务,在预测模型和联邦学习框架上分别提出了创新性的优化算法,有效提升了人工智能辅助多中心宫颈癌淋巴结转移的诊断能力。本文提出的方法有助于提高宫颈癌诊断和治疗的准确性,同时为联邦学习在医疗领域的应用提供了新思路。本文相关工作以本人为第一作者发表于医工交叉主流SCI期刊 Medical Physics 和 IEEE International Symposium on Biomedical Imaging 国际会议。

学科主题人工智能 ; 模式识别
语种中文
页码54
源URL[http://ir.ia.ac.cn/handle/173211/56507]  
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
刘圣圆. 基于对比表征联邦学习的宫颈癌淋巴结转移预测研究[D]. 2024.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。