中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An End-to-End Haptic Adjective Recognition Method with Self-Attention Mechanism

文献类型:会议论文

作者Yuanpei Zhang2,3; Zhuojun Zou1,2; Lin Shu1,2; Jie Hao1,2
出版日期2023-10
会议日期October 28-29, 2023
会议地点Wuhan, China
关键词Haptic Adjective Recognition End-to-End Framework
英文摘要
Human's ability to describe the tactile sensation of objects has piqued the interest of numerous researchers seeking to augment the dexterity of robots in delicate tasks. However, most existing approaches are limited by their two-stage framework, resulting in low inference efficiency and unsatisfactory performance. To address this challenge, we propose the first end-to-end framework for haptic adjective classification. Specifically, our framework leverages the Space Encoding Module to capture long-term dependencies, and the Order Encoding Module to learn order information explicitly. We conduct experiments on the public PHAC-2 Dataset and the result shows that our method achieves F1 score of 0.759, outperforming previous work in a significant way.
源URL[http://ir.ia.ac.cn/handle/173211/56579]  
专题国家专用集成电路设计工程技术研究中心_实感计算
通讯作者Jie Hao
作者单位1.Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
2.Institute of Automation, Chinese Academy of Sciences, Beijing, China
3.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Yuanpei Zhang,Zhuojun Zou,Lin Shu,et al. An End-to-End Haptic Adjective Recognition Method with Self-Attention Mechanism[C]. 见:. Wuhan, China. October 28-29, 2023.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。