中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于鲁棒部分标签学习的情感识别

文献类型:学位论文

作者徐名宇
答辩日期2024-05-13
文献子类硕士
关键词情感识别、部分标签学习、类别不平衡、标签噪声、标签鲁棒请输入关键词
英文摘要

随着人工智能技术的快速发展,情感识别作为人工智能领域的一个重要分 支,对于改善人机交互体验、提升社交媒体分析能力以及促进医疗诊断等方面具 有重要意义。然而,情感识别研究面临着数据标注成本高,情感识别数据少的挑 战,这些问题限制了情感识别技术的广泛应用。为了降低情感识别的标注成本和 充分利用具有弱标注的情感数据,在弱监督条件下展开情感识别研究的重要性 也与日俱增。而部分标签学习是弱监督学习的一个重要分支,因此本文针对部分 标签情感识别展开了研究。现有的方法存在两个主要缺陷,首先,往往忽略了情 感识别任务中严重的标签不平衡性,其次,往往忽略了情感数据在标注过程中普 遍存在的噪声。为了实现更加鲁棒的部分标签情感识别,本文针对其中的类别不 平衡问题和噪声标签问题展开了研究。本文的主要贡献总结如下: • 提出了一种缓解类别不平衡问题的部分标签情感识别方法。情感数据固 有的分布不均问题导致情感识别数据集中类别不平衡现象的普遍存在。这一挑 战往往未受到传统部分标签学习方法的充分重视,从而为构建鲁棒的部分标签 情感识别系统带来了额外的困难。本文提出了一种基于伪标签正则化的策略以 应对部分标签情感识别中的类别不平衡问题。该方法包含两个相互迭代优化的 过程:估计情感类别比例和动态更新伪标签。同时,通过挑选每个情感类别中的 高置信度样本,以及对同一个情感样本进行强弱增广的预测一致性正则,进一步 提升模型的识别准确性。本研究在多个情感识别数据集上进行了实验验证,实验 结果表明,与当前最先进的部分标签学习方法相比,本研究提出的方法展现出了 更好的情感识别效果。这一研究表明了采用伪标签正则化策略能够降低对常见 类别的过拟合,提升模型的鲁棒性,增强了模型对惊讶等长尾类别的识别能力。 • 提出了一种提升噪声部分标签条件下情感识别性能的方法。情感数据的 本质模糊性和标注过程的复杂性不可避免地导致了情感识别数据中标签噪声的 产生。然而,传统的部分标签学习方法常常忽视这一问题而假设真实标签总包含 在提供的候选标签集合之内,这种做法在追求鲁棒性的部分标签情感识别任务 中显得尤为不足。针对这一问题,本文提出了一种在标签集合信息和模型预测结 果之间寻求平衡的伪标签方法。本研究的创新之处在于,首次将标签信息的动态 平衡应用于部分标签学习,通过调整候选标签集合和模型预测结果之间的权重, 有效提升了部分标签情感识别在噪声条件下的性能。在多个情感识别数据集上 的实验证明,本文所提方法不仅在噪声条件下超过基线方法,还能进一步提升现 有部分标签学习方法的性能。这一研究表明了采用动态调整候选标签重要性的 策略能有效防止对噪声标签的过拟合,从而提高了噪声部分标签情感识别的准确性。

语种中文
页码84
源URL[http://ir.ia.ac.cn/handle/173211/56591]  
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
徐名宇. 基于鲁棒部分标签学习的情感识别[D]. 2024.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。