基于强化学习的电网调度研究
文献类型:学位论文
作者 | 王威![]() |
答辩日期 | 2024-05-16 |
文献子类 | 硕士 |
关键词 | 电网自动化调度 电网有功出力调度 电网拓扑结构优化 强化学习 |
英文摘要 | 随着用电需求的逐渐增加和电源形式的日益丰富,传统电网调度方法的局限性日益凸显,电网运行的质量和效率也亟需进一步提升。人工智能(Artifcial Intelligence, AI)方法凭借其强大的学习能力,近年来在多个领域表现出色,为
为了提高有功出力调度任务中电网调度的稳定性,同时兼顾调度的质量,本文提出融合了人类先验知识的分层安全强化学习(Hierarchical Safe Reinforcement Learning)的方法,在调度过程中同时兼顾稳定性以及原始任务性能。并且构建了新能源机组占比大的有功出力调度环境,验证了所提方法的性能,分层安全强化学习的方法具有更高的稳定性,同时任务性能也不会明显下降。 为了解决拓扑结构优化中的大规模不均衡离散动作空间问题,本文提出了基于搜索排序的强化学习(Reinforcement Learning based Searching and Ranking )的方法,通过多阶段逐级降维的方法获得更小的高质量动作空间,并使用强化学习对候选动作集合进行长期视角的排序。在标准的拓扑优化环境中对所提算法进行了全面的评估,本文所提方法可以在保证存活时间和累计奖励的前提下,大幅降低智能体的单步模拟次数,提高调度的效率。 最后,为了直观地展现本文研究成果,本文开发了针对有功出力调度和拓扑结构调度的电网运行可视化系统。该系统集成了本文讨论的两种关键调度场景,通过图形界面展示了算法在实际电网运行过程中的工作流程和效果,并允许用户通过交互修改调度进程,直观地对比不同策略对电网运行的影响。 |
语种 | 中文 |
页码 | 92 |
源URL | [http://ir.ia.ac.cn/handle/173211/56906] ![]() |
专题 | 毕业生_硕士学位论文 |
推荐引用方式 GB/T 7714 | 王威. 基于强化学习的电网调度研究[D]. 2024. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。