SynDG: Syntax-aware Dialogue Generation
文献类型:会议论文
作者 | Junyan Qiu2,3![]() ![]() ![]() |
出版日期 | 2023-08 |
会议日期 | March 17 - 20, 2023 |
会议地点 | Tianjin China |
关键词 | dialogue system natural language generation dependency parsing graph attention network |
英文摘要 | Dialogue system is designed to converse with humans in a natural way. As an essential part of dialogue system, dialogue generation aims to generate proper response given historical context. Recently, sequence-to-sequence (seq2seq) based models have achieved great success but suffer from ungrammatical problems. In this paper, we propose a Syntax-aware Dialogue Generation (SynDG) model that incorporates syntactic information to generate grammatical responses with an encoder-decoder framework. Specifically, we first construct a syntax-graph with a dependency parser on the dialogue corpus. Then, we employ three graph embedding algorithms to learn syntactic word representations as the input of seq2seq framework. Furthermore, we devise training strategies to predict syntactic structure of the sentence for sufficient syntax understanding. Our empirical study on two multi-turn dialogue datasets demonstrates the effectiveness of SynDG in generating natural and grammatical responses |
会议录出版者 | ACM |
源URL | [http://ir.ia.ac.cn/handle/173211/57414] ![]() |
专题 | 综合信息系统研究中心_视知觉融合及其应用 |
通讯作者 | Junyan Qiu |
作者单位 | 1.Meituan 2.Institute of Automation, Chinese Academy of Sciences 3.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Junyan Qiu,Yiping Yang,Haitao Wang. SynDG: Syntax-aware Dialogue Generation[C]. 见:. Tianjin China. March 17 - 20, 2023. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。