中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SynDG: Syntax-aware Dialogue Generation

文献类型:会议论文

作者Junyan Qiu2,3; Yiping Yang1; Haitao Wang2
出版日期2023-08
会议日期March 17 - 20, 2023
会议地点Tianjin China
关键词dialogue system natural language generation dependency parsing graph attention network
英文摘要

Dialogue system is designed to converse with humans in a natural way. As an essential part of dialogue system, dialogue generation aims to generate proper response given historical context. Recently, sequence-to-sequence (seq2seq) based models have achieved great success but suffer from ungrammatical problems. In this paper, we propose a Syntax-aware Dialogue Generation (SynDG) model that incorporates syntactic information to generate grammatical responses with an encoder-decoder framework. Specifically, we first construct a syntax-graph with a dependency parser on the dialogue corpus. Then, we employ three graph embedding algorithms to learn syntactic word representations as the input of seq2seq framework. Furthermore, we devise training strategies to predict syntactic structure of the sentence for sufficient syntax understanding. Our empirical study on two multi-turn dialogue datasets demonstrates the effectiveness of SynDG in generating natural and grammatical responses

会议录出版者ACM
源URL[http://ir.ia.ac.cn/handle/173211/57414]  
专题综合信息系统研究中心_视知觉融合及其应用
通讯作者Junyan Qiu
作者单位1.Meituan
2.Institute of Automation, Chinese Academy of Sciences
3.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Junyan Qiu,Yiping Yang,Haitao Wang. SynDG: Syntax-aware Dialogue Generation[C]. 见:. Tianjin China. March 17 - 20, 2023.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。