RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
文献类型:会议论文
作者 | Fan L(范略)2,3,5,6![]() ![]() ![]() |
出版日期 | 2021-10 |
会议日期 | 2021/10/11 - 2021/10/17 |
会议地点 | 线上 |
关键词 | 点云目标检测 自动驾驶 |
DOI | 10.1109/ICCV48922.2021.00291 |
英文摘要 | In this paper, we propose an anchor-free single-stage LiDAR-based 3D object detector – RangeDet. The most notable difference with previous works is that our method is purely based on the range view representation. Compared with the commonly used voxelized or Bird’s Eye View (BEV) representations, the range view representation is more compact and without quantization error. Although there are works adopting it for semantic segmentation, its performance in object detection is largely behind voxelized or BEV counterparts. We first analyze the existing range-view-based methods and find two issues overlooked by previous works: 1) the scale variation between nearby and far away objects; 2) the inconsistency between the 2D range image coordinates used in feature extraction and the 3D Cartesian coordinates used in output. Then we deliberately design three components to address these issues in our RangeDet. We test our RangeDet in the large-scale Waymo Open Dataset (WOD). Our best model achieves 72.9/75.9/65.8 3D AP on vehicle/pedestrian/cyclist. These results outperform other range-view-based methods by a large margin, and are overall comparable with the state-of-the-art multi-view-based methods. Codes will be released at https://github.com/TuSimple/RangeDet. |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/57421] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
作者单位 | 1.图森未来 2.中国科学院大学 3.模式识别国家重点实验室 4.中国科学院香港创新研究院,人工智能与机器人研究中心 5.中国科学院大学未来技术学院 6.中国科学院自动化所 |
推荐引用方式 GB/T 7714 | Fan L,Xiong X,Wang F,et al. RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection[C]. 见:. 线上. 2021/10/11 - 2021/10/17. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。