中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
面向服务机器人的社交导航方法研究

文献类型:学位论文

作者高星远
答辩日期2024-05
文献子类硕士
关键词服务机器人 社交导航 运动规划
英文摘要

随着机器人技术和人工智能的发展,越来越多的服务机器人被应用于商场、车站、机场、银行等公共场所,为人们提供各种服务,如导航、清洁、物品搬运等。对服务机器人而言,安全、高效地自主导航是最关键的能力之一,但现有的机器人导航技术还远未达到自主适应各种与人类交互场景的智能水平。因此,人-机共融场景中的机器人社交导航技术是目前的研究重点,具体而言:服务机器人不仅要能够准确理解人-机-环境三者之间的交互关系,还需要具备智能的运动规划能力,以实现安全导航的同时,遵守人类的社交规范。研究面向服务机器人的社交导航技术,能够进一步提高服务机器人与人和环境共融的能力,有利于推动服务机器人在实际生活中的普及和应用。

近年来,机器人社交导航技术取得了一些进展。但是仍然面临以下三个方面的挑战:(1)行人之间的交互关系会对机器人的导航决策产生间接影响,然而这些交互关系是复杂且难以观测的,传统的交互建模方式往往无法很好地处理行人之间的交互关系。(2)行人的行为受到多种因素的影响而表现出很强的随机性,难以通过简单的规则或模型来准确地预测其未来的移动轨迹。同时,机器人的运动规划需要具备较强的鲁棒性才能应对各种不确定性情况。(3)在人-机-环境共融的场景中,环境结构、行人的行为模式以及机器人的动作策略之间存在着复杂的交互关系,难以准确表征,这对机器人的交互关系建模和场景理解能力提出了更高的要求。同时,如何利用人-机-环境之间的交互信息来进行机器人的运动规划,仍然需要进一步研究和探索。本文针对面向服务机器人的社交导航方法开展研究,主要工作和创新点归纳如下:

(1)针对社交导航任务中人类交互意图难以观测的问题,提出一种基于卷积社交池化网络的机器人运动规划方法,实现了多人交互环境下机器人高效自主运动。首先,建立了社交导航问题的强化学习框架,设计了相应的状态空间、动作空间以及奖励函数;其次,构建了卷积社交池化网络,实现了对行人之间交互关系以及机器人与行人之间交互关系的特征提取;然后,构建了基于Actor-Critic强化学习的策略模型,通过考虑社交场景中的行人交互关系进行机器人动作决策。最后,通过仿真环境和真实场景中的大量实验验证了所提方法的有效性。

(2)针对社交导航任务中人类行为的不确定性高、难以准确预测的问题,提出一种基于行人多模式运动预测的机器人运动规划方法,提高了多行人动态环境下机器人运动规划的鲁棒性。首先,构建了时空交互特征提取模块以提取行人之间交互的时空相关性;然后,基于状态空间模型构建具有随机组件的行人轨迹预测模型,并且将机器人规划的动作嵌入到行人状态的预测过程中,以考虑行人可能的响应行为,实现对每个行人多样化潜在行为的推断;接着,提出了一个基于群体搜索的机器人动作决策算法,利用预测出的行人多条潜在轨迹优化机器人动作序列,实现机器人高效、鲁棒运动的同时遵守社交规范;最后,在仿真环境和真实场景进行了大量实验,结果表明所提方法在导航成功率、效率等指标上优于目前最先进的方法。

(3)针对环境-行人-机器人三者之间交互关系难以准确表征的问题,提出一种基于异质关系图学习的机器人运动规划方法,提高了机器人在人-机-环境共融场景下动作决策的能力。首先,提出了一种环境信息矢量化的特征表征方式,将障碍信息转化为图结构数据,并利用图神经网络提取其结构化特征;其次,构建了一个基于异质关系图网络的多模态交互特征融合模块,实现了对行人与行人、行人与障碍之间的异质交互特征的融合;然后,设计了一个机器人策略-价值模型,通过自动分配机器人-障碍交互特征、机器人-行人交互特征以及机器人目标特征的权重,实现了在不同场景下机器人策略的自适应调整;接着,构建了基于蒙特卡洛树搜索的动作决策框架,实现了机器人在复杂环境下的自主导航;最后,通过与最先进的算法进行对比实验,验证了所提方法的有效性。

语种中文
页码112
源URL[http://ir.ia.ac.cn/handle/173211/57427]  
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
高星远. 面向服务机器人的社交导航方法研究[D]. 2024.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。