中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
TFNet: Multi-Semantic Feature Interaction for CTR Prediction

文献类型:会议论文

作者Shu Wu2; Feng Yu2; Xueli Yu2; Qiang Liu2; Liang Wang2; Tieniu Tan2; Jie Shao1; Fan Huang1
出版日期2020-07-25
会议日期2020/07/25-30
会议地点Virtual Event, China
英文摘要

The CTR (Click-Through Rate) prediction plays a central role in the domain of computational advertising and recommender systems. There exists several kinds of methods proposed in this field, such as Logistic Regression (LR), Factorization Machines (FM) and deep learning based methods like Wide&Deep, Neural Factorization Machines (NFM) and DeepFM. However, such approaches generally use the vector-product of each pair of features, which have ignored the different semantic spaces of the feature interactions. In this paper, we propose a novel Tensor-based Feature interaction Network (TFNet) model, which introduces an operating tensor to elaborate feature interactions via multi-slice matrices in multiple semantic spaces. Extensive offline and online experiments show that TFNet: 1) outperforms the competitive compared methods on the typical Criteo and Avazu datasets; 2) achieves large improvement of revenue and click rate in online A/B tests in the largest Chinese App recommender system, Tencent MyApp.

会议录出版者SIGIR ’20
源URL[http://ir.ia.ac.cn/handle/173211/57495]  
专题自动化研究所_智能感知与计算研究中心
作者单位1.Tencent
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Shu Wu,Feng Yu,Xueli Yu,et al. TFNet: Multi-Semantic Feature Interaction for CTR Prediction[C]. 见:. Virtual Event, China. 2020/07/25-30.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。