|
作者 | Songlin Yang2 ; Wei Wang3 ; Jun Ling4; Bo Peng3; Xu Tan1; Jing Dong3
|
出版日期 | 2023
|
会议日期 | 2023.10.29-2023.11.2
|
会议地点 | 加拿大渥太华
|
英文摘要 | Talking-head video editing aims to efficiently insert, delete, and
substitutethewordofapre-recordedvideothroughatexttranscript
editor. The key challenge for this task is obtaining an editing model
that generates new talking-head video clips which simultaneously
have accurate lip synchronization and motion smoothness. Pre-
vious approaches, including 3DMM-based (3D Morphable Model)
methods and NeRF-based (Neural Radiance Field) methods, are sub-
optimal in that they either require minutes of source videos and
days of training time or lack the disentangled control of verbal (e.g.,
lip motion) and non-verbal (e.g., head pose and expression) repre-
sentations for video clip insertion. In this work, we fully utilize the
video context to design a novel framework for talking-head video
editing, which achieves efficiency, disentangled motion control, and |
源文献作者 | tt
|
会议录出版者 | tt
|
会议录出版地 | tt
|
源URL | [http://ir.ia.ac.cn/handle/173211/57512]  |
专题 | 自动化研究所_智能感知与计算研究中心
|
通讯作者 | Wei Wang |
作者单位 | 1.Microsoft Research Asia Beijing, China 2.University of Chinese Academy of Sciences 3.Institute of Automation, Chinese Academy of Sciences Beijing, China 4.Shanghai Jiao Tong University Shanghai, China
|
推荐引用方式 GB/T 7714 |
Songlin Yang,Wei Wang,Jun Ling,et al. Context-Aware Talking-Head Video Editing[C]. 见:. 加拿大渥太华. 2023.10.29-2023.11.2.
|