中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning to Coordinate via Multiple Graph Neural Networks

文献类型:会议论文

作者Zhiwei Xu1,2; Bin Zhang1,2; Yunpeng Bai1,2; Dapeng Li1,2; Guoliang Fan1,2
出版日期2022
会议日期December 8-12, 2021
会议地点BALI, Indonesia
DOI10.1007/978-3-030-92238-2\_5
页码52-63
英文摘要

The collaboration between agents has gradually become an important topic in multi-agent systems. The key is how to efficiently solve the credit assignment problems. This paper introduces MGAN for collaborative multi-agent reinforcement learning, a new algorithm that combines graph convolutional networks and value-decomposition methods. MGAN learns the representation of agents from different perspectives through multiple graph networks, and realizes the proper allocation of attention between all agents. We show the amazing ability of the graph network in representation learning by visualizing the output of the graph network, and therefore improve interpretability for the actions of each agent in the multi-agent system.

语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/56519]  
专题融合创新中心_决策指挥与体系智能
通讯作者Guoliang Fan
作者单位1.School of Artificial Intelligence, University of Chinese Academy of Sciences
2.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Zhiwei Xu,Bin Zhang,Yunpeng Bai,et al. Learning to Coordinate via Multiple Graph Neural Networks[C]. 见:. BALI, Indonesia. December 8-12, 2021.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。