中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with Dual Coordination Mechanism

文献类型:会议论文

作者Zhiwei Xu1,2; Yunpeng Bai1,2; Bin Zhang1,2; Dapeng Li1,2; Guoliang Fan1,2
出版日期2023
会议日期February 7-14, 2023
会议地点Washington, DC, USA
DOI10.1609/AAAI.V37I10.26386
页码11735-11743
英文摘要

Recently, some challenging tasks in multi-agent systems have been solved by some hierarchical reinforcement learning methods. Inspired by the intra-level and inter-level coordination in the human nervous system, we propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for fully cooperative multi-agent problems. To address the instability arising from the concurrent optimization of policies between various levels and agents, we introduce the dual coordination mechanism of inter-level and inter-agent strategies by designing reward functions in a two-level hierarchy. HAVEN does not require domain knowledge and pre-training, and can be applied to any value decomposition variant. Our method achieves desirable results on different decentralized partially observable Markov decision process domains and outperforms other popular multi-agent hierarchical reinforcement learning algorithms.

语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/56527]  
专题融合创新中心_决策指挥与体系智能
通讯作者Guoliang Fan
作者单位1.School of Artificial Intelligence, University of Chinese Academy of Sciences
2.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Zhiwei Xu,Yunpeng Bai,Bin Zhang,et al. HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with Dual Coordination Mechanism[C]. 见:. Washington, DC, USA. February 7-14, 2023.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。