中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Interaction-Aware Trajectory Prediction with Point Transformer

文献类型:会议论文

作者Yahui, Liu1,3; Xingyuan, Dai1,3; Jianwu, Fang2; Bin, Tian1,3; Yisheng, Lv1,3
出版日期2023-09
会议日期24-28 September 2023
会议地点Bilbao, Bizkaia, Spain
关键词trajectory prediction
页码5694-5699
英文摘要

To ensure safe and efficient autonomous driving, trajectory prediction system must account for social interactions among road participants. Graph-based models are leading approaches in modeling social interactions for trajectory prediction, but they face the challenges of designing an appropriate graph structure and processing complex interactions. We consider that the participants in a scene are a set of unstructured points, which are similar to point cloud data. Inspired by
point cloud learning networks, we view the road participants in a scene as point cloud in a two-dimensional coordinate system, and utilize Point Transformer aggregator to process the interactions on both local and global level. Besides, we present a multiplex fusion of social and temporal information for trajectory prediction. We perform extensive experiments
on the Argoverse motion forecasting dataset, and the results demonstrate the superior performance of our model for multi-agent trajectory prediction.

源URL[http://ir.ia.ac.cn/handle/173211/56528]  
专题多模态人工智能系统全国重点实验室
通讯作者Yisheng, Lv
作者单位1.University of Chinese Academy of Sciences
2.Chang'an University,
3.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yahui, Liu,Xingyuan, Dai,Jianwu, Fang,et al. Interaction-Aware Trajectory Prediction with Point Transformer[C]. 见:. Bilbao, Bizkaia, Spain. 24-28 September 2023.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。