中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SRK-Net: Learning to Detect Repeatable Keypoints with Local Saliency Knowledge

文献类型:会议论文

作者Fu Yujie1,2; Rong Zheng2; Wu Yihong1,2
出版日期2022-10-18
会议日期2022-10-16至2022-10-19
会议地点Bordeaux, France
关键词Image Matching Keypoint Detection Local Saliency Knowledge
DOI10.1109/ICIP46576.2022.9897263
页码276-280
英文摘要

The dominant approach for learning keypoint detectors relies on the covariance constraint. However, existing learned detectors sometimes extract unstable keypoints from edges.
To solve this problem, we propose a novel method that exploits local saliency knowledge to train a keypoint detector, and obtain a keypoint detector, called as SRK-Net, which can extract stable and repeatable keypoints.
Firstly, given an image, we propose a General Local Saliency Measure method (GLSM) to assess the local saliency value for each pixel and generate a local saliency map for this image.
Then we propose a Local Salient Structure Maintaining loss (LSSM) and a two-stage progressive training manner tailored for leveraging the supervision of the covariance constraint and the local saliency maps provided by our GLSM.
Experimental results show that the proposed SRK-Net performs better than all the existing keypoint detectors on HPatches dataset.

源文献作者IEEE
语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/56565]  
专题自动化研究所_模式识别国家重点实验室_机器人视觉团队
通讯作者Wu Yihong
作者单位1.School of Artificial Intelligence, University of Chinese Academy of Sciences
2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Fu Yujie,Rong Zheng,Wu Yihong. SRK-Net: Learning to Detect Repeatable Keypoints with Local Saliency Knowledge[C]. 见:. Bordeaux, France. 2022-10-16至2022-10-19.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。