SRK-Net: Learning to Detect Repeatable Keypoints with Local Saliency Knowledge
文献类型:会议论文
作者 | Fu Yujie1,2![]() ![]() ![]() |
出版日期 | 2022-10-18 |
会议日期 | 2022-10-16至2022-10-19 |
会议地点 | Bordeaux, France |
关键词 | Image Matching Keypoint Detection Local Saliency Knowledge |
DOI | 10.1109/ICIP46576.2022.9897263 |
页码 | 276-280 |
英文摘要 | The dominant approach for learning keypoint detectors relies on the covariance constraint. However, existing learned detectors sometimes extract unstable keypoints from edges. |
源文献作者 | IEEE |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/56565] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
通讯作者 | Wu Yihong |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences 2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Fu Yujie,Rong Zheng,Wu Yihong. SRK-Net: Learning to Detect Repeatable Keypoints with Local Saliency Knowledge[C]. 见:. Bordeaux, France. 2022-10-16至2022-10-19. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。