中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Accelerate Dense Matrix Multiplication on Heterogeneous-GPUs

文献类型:会议论文

作者Sun, Jianan1,2; Liao, Mingxue2; Chao, Yongyue1,2; Lv, Pin2
出版日期2023-12
会议日期2023-12
会议地点Ocean Flower Island, Hainan, China
英文摘要

Matrix multiplication is crucial in scientific computing, but it demands substantial resources. We propose a framework for effectively utilizing heterogeneous GPUs to large matrix multiplication. By splitting matrices into small blocks and using Douglas’s variant of Strassen’s algorithm, we enable concurrent tasks on heterogeneous systems. Our framework improves speed by 89.5% on homogeneous GPU servers and by 108% in multi-server heterogeneous GPU setups.

源URL[http://ir.ia.ac.cn/handle/173211/56571]  
专题复杂系统认知与决策实验室
通讯作者Liao, Mingxue
作者单位1.School of Artificial Intelligence, University of Chinese Academy of Sciences
2.Institute of Automation, Chinese Academy of Sciences.
推荐引用方式
GB/T 7714
Sun, Jianan,Liao, Mingxue,Chao, Yongyue,et al. Accelerate Dense Matrix Multiplication on Heterogeneous-GPUs[C]. 见:. Ocean Flower Island, Hainan, China. 2023-12.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。