Accelerate Dense Matrix Multiplication on Heterogeneous-GPUs
文献类型:会议论文
作者 | Sun, Jianan1,2![]() ![]() ![]() ![]() |
出版日期 | 2023-12 |
会议日期 | 2023-12 |
会议地点 | Ocean Flower Island, Hainan, China |
英文摘要 | Matrix multiplication is crucial in scientific computing, but it demands substantial resources. We propose a framework for effectively utilizing heterogeneous GPUs to large matrix multiplication. By splitting matrices into small blocks and using Douglas’s variant of Strassen’s algorithm, we enable concurrent tasks on heterogeneous systems. Our framework improves speed by 89.5% on homogeneous GPU servers and by 108% in multi-server heterogeneous GPU setups. |
源URL | [http://ir.ia.ac.cn/handle/173211/56571] ![]() |
专题 | 复杂系统认知与决策实验室 |
通讯作者 | Liao, Mingxue |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences 2.Institute of Automation, Chinese Academy of Sciences. |
推荐引用方式 GB/T 7714 | Sun, Jianan,Liao, Mingxue,Chao, Yongyue,et al. Accelerate Dense Matrix Multiplication on Heterogeneous-GPUs[C]. 见:. Ocean Flower Island, Hainan, China. 2023-12. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。