中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Enhancing ENSO predictions with self-attention ConvLSTM and temporal embeddings

文献类型:期刊论文

作者Rui, Chuang3; Sun, Zhengya3,4; Zhang, Wensheng3; Liu, Anan2; Wei, Zhiqiang1
刊名Frontiers in Marine Science
出版日期2024-02-12
卷号11页码:1334210
关键词El Niño-Southern Oscillation (ENSO) deep learning for ENSO prediction self-attention ConvLSTM temporal embeddings spring prediction barrier
DOIhttps://doi.org/10.3389/fmars.2024.1334210
文献子类article
英文摘要

El Niño-Southern Oscillation (ENSO), a cyclic climate phenomenon spanning interannual and decadal timescales, exerts substantial impacts on the global weather patterns and ecosystems. Recently, deep learning has brought considerable advances in the accurate prediction of ENSO occurrence. However, the current models are insufficient to characterize the evolutionary behavior of the ENSO, particularly lacking comprehensive modeling of local range and longrange spatiotemporal interdependencies, and the incorporation of calendar monthly and seasonal properties. To make up this gap, we propose a Two-Stage SpatioTemporal (TSST) autoregressive model that couples the meteorological factor prediction with ENSO indicator prediction. The first stage predicts the meteorological time series by leveraging self-attention ConvLSTM network which captures both the local and the global spatial temporal dependencies. The temporal embeddings of calendar months and seasonal information are further incorporated to preserves repeatedly occurring-yet-hidden patterns in meteorological series. The second stage uses multiple layers to extract higher level of features from predicted meteorological factors progressively to generate ENSO indicators. The results demonstrate that our model outperforms the state-of-the-art ENSO prediction models, effectively predicting ENSO up to 24 months and mitigating the spring predictability barrier.

URL标识查看原文
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/56609]  
专题精密感知与控制研究中心_人工智能与机器学习
作者单位1.中国海洋大学
2.天津大学
3.中国科学院自动化研究所
4.中国科学院大学
推荐引用方式
GB/T 7714
Rui, Chuang,Sun, Zhengya,Zhang, Wensheng,et al. Enhancing ENSO predictions with self-attention ConvLSTM and temporal embeddings[J]. Frontiers in Marine Science,2024,11:1334210.
APA Rui, Chuang,Sun, Zhengya,Zhang, Wensheng,Liu, Anan,&Wei, Zhiqiang.(2024).Enhancing ENSO predictions with self-attention ConvLSTM and temporal embeddings.Frontiers in Marine Science,11,1334210.
MLA Rui, Chuang,et al."Enhancing ENSO predictions with self-attention ConvLSTM and temporal embeddings".Frontiers in Marine Science 11(2024):1334210.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。