D2AH-PPO: Playing ViZDoom With Object-Aware Hierarchical Reinforcement Learning
文献类型:会议论文
作者 | Niu LY(钮龙宇)1,2![]() ![]() |
出版日期 | 2024-05 |
会议日期 | 2024.5.7-5.9 |
会议地点 | 中国重庆 |
关键词 | 深度强化学习 表征学习 分层学习 |
英文摘要 | Deep reinforcement learning (DRL) has achieved superhuman performance on Atari games using only raw pixels. However, when applied to complex 3D first-person shooter (FPS) environments, it often faces compound challenges of inefficient exploration, partial observability, and sparse rewards. To address this, we propose the Depth-Detection Augmented Hierarchical Proximal Policy Optimization (D2AH-PPO) method. Specifically, our framework utilizes a two-level hierarchy where the higher-level controller handles option control learning, while the lower-level workers focus on mastering sub-tasks. To boost the learning of sub-tasks, D2AH-PPO involves a combination technique, which includes 1) object-aware representation learning that extracts high-dimensional information representation of crucial components, and 2) a rule-based action mask for safer and more purposeful exploration. We assessed the efficacy of our framework in the 3D FPS game 'ViZDoom'. Extensive experiments indicate that D2AH-PPO significantly enhances exploration and outperforms several baselines. |
源URL | [http://ir.ia.ac.cn/handle/173211/56630] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 |
通讯作者 | Wan J(万军) |
作者单位 | 1.School of Artificial Intelligence, UCAS, Beijing, China 2.MAIS, CASIA, Beijing, China |
推荐引用方式 GB/T 7714 | Niu LY,Wan J. D2AH-PPO: Playing ViZDoom With Object-Aware Hierarchical Reinforcement Learning[C]. 见:. 中国重庆. 2024.5.7-5.9. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。