中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
D2AH-PPO: Playing ViZDoom With Object-Aware Hierarchical Reinforcement Learning

文献类型:会议论文

作者Niu LY(钮龙宇)1,2; Wan J(万军)1,2
出版日期2024-05
会议日期2024.5.7-5.9
会议地点中国重庆
关键词深度强化学习 表征学习 分层学习
英文摘要

Deep reinforcement learning (DRL) has achieved superhuman performance on Atari games using only raw pixels. However, when applied to complex 3D first-person shooter (FPS) environments, it often faces compound challenges of inefficient exploration, partial observability, and sparse rewards. To address this, we propose the Depth-Detection Augmented Hierarchical Proximal Policy Optimization (D2AH-PPO) method. Specifically, our framework utilizes a two-level hierarchy where the higher-level controller handles option control learning, while the lower-level workers focus on mastering sub-tasks. To boost the learning of sub-tasks, D2AH-PPO involves a combination technique, which includes 1) object-aware representation learning that extracts high-dimensional information representation of crucial components, and 2) a rule-based action mask for safer and more purposeful exploration. We assessed the efficacy of our framework in the 3D FPS game 'ViZDoom'. Extensive experiments indicate that D2AH-PPO significantly enhances exploration and outperforms several baselines.

源URL[http://ir.ia.ac.cn/handle/173211/56630]  
专题自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心
通讯作者Wan J(万军)
作者单位1.School of Artificial Intelligence, UCAS, Beijing, China
2.MAIS, CASIA, Beijing, China
推荐引用方式
GB/T 7714
Niu LY,Wan J. D2AH-PPO: Playing ViZDoom With Object-Aware Hierarchical Reinforcement Learning[C]. 见:. 中国重庆. 2024.5.7-5.9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。