中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning

文献类型:会议论文

作者Yang, Chen1,2; Yang, Guangkai1,2; Zhang, Junge1,2
出版日期2023-05
会议日期2023-5
会议地点London, United Kingdom
DOI10.5555/3545946.3598953
英文摘要

We investigate explicit solutions to multi-agent credit assignment problem. Specifically, we assign each agent individual difference rewards in addition to the team reward as to distinguish the contribution of different agents to the team. We present a novel reward decomposition network to estimate the influence of each agent's action on the team reward, and distribute difference rewards accordingly. Furthermore, we combine difference rewards with actor-critic framework and propose a new approach called learning individual difference rewards (LIDR). We evaluate LIDR on a set of StarCraft II micromanagement problems. Results show that LIDR significantly outperforms previous state-of-the-art methods.

源文献作者IFAAMAS
会议录出版者IFAAMAS
会议录出版地IFAAMAS
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/56654]  
专题智能系统与工程
通讯作者Zhang, Junge
作者单位1.School of Artificial Intelligence, University of Chinese Academy of Sciences
2.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yang, Chen,Yang, Guangkai,Zhang, Junge. Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning[C]. 见:. London, United Kingdom. 2023-5.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。