Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning
文献类型:会议论文
作者 | Yang, Chen1,2![]() ![]() ![]() |
出版日期 | 2023-05 |
会议日期 | 2023-5 |
会议地点 | London, United Kingdom |
DOI | 10.5555/3545946.3598953 |
英文摘要 | We investigate explicit solutions to multi-agent credit assignment problem. Specifically, we assign each agent individual difference rewards in addition to the team reward as to distinguish the contribution of different agents to the team. We present a novel reward decomposition network to estimate the influence of each agent's action on the team reward, and distribute difference rewards accordingly. Furthermore, we combine difference rewards with actor-critic framework and propose a new approach called learning individual difference rewards (LIDR). We evaluate LIDR on a set of StarCraft II micromanagement problems. Results show that LIDR significantly outperforms previous state-of-the-art methods. |
源文献作者 | IFAAMAS |
会议录出版者 | IFAAMAS |
会议录出版地 | IFAAMAS |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/56654] ![]() |
专题 | 智能系统与工程 |
通讯作者 | Zhang, Junge |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences 2.Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Yang, Chen,Yang, Guangkai,Zhang, Junge. Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning[C]. 见:. London, United Kingdom. 2023-5. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。