中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentatio

文献类型:期刊论文

作者Rongtao Xu1,3; Changwei Wang1,3; Jiguang Zhang1; Shibiao Xu2; Weiliang Meng1; Xiaopeng Zhang1
刊名IEEE Transactions on Image Processing
出版日期2023-01
卷号32期号:页码:1052-1064
关键词遥感图像语义分割
ISSN号1941-0042
DOI10.1109/TIP.2023.3238648
文献子类期刊论文
英文摘要

High spatial resolution (HSR) remote sensing images contain complex foreground-background relationships, which makes the remote sensing land cover segmentation a special semantic segmentation task. The main challenges come from the large-scale variation, complex background samples and imbalanced foreground-background distribution. These issues make recent context modeling methods sub-optimal due to the lack of foreground saliency modeling. To handle these problems, we propose a Remote Sensing Segmentation framework (RSSFormer), including Adaptive TransFormer Fusion Module, Detail-aware Attention Layer and Foreground Saliency Guided Loss. Specifically, from the perspective of relation-based fore ground saliency modeling, our Adaptive Transformer Fusion Module can adaptively suppress background noise and enhance object saliency when fusing multi-scale features. Then our Detail-aware Attention Layer extracts the detail and foreground related information via the interplay of spatial attention and channel attention, which further enhances the foreground saliency. From the perspective of optimization-based foreground saliency modeling, our Foreground Saliency Guided Loss can guide the network to focus on hard samples with low foreground saliency responses to achieve balanced optimization. Experimental results on LoveDA datasets, Vaihingen datasets, Potsdam datasets and iSAID datasets validate that our method outperforms existing general semantic segmentation methods and remote sensing segmentation methods, and achieves a good compromise between computational overhead and accuracy.

URL标识查看原文
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/56670]  
专题模式识别国家重点实验室_三维可视计算
通讯作者Shibiao Xu; Weiliang Meng
作者单位1.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, China
2.School of Artificial Intelligence, Beijing University of Posts and Telecommunications, China
3.School of Artificial Intelligence, University of Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Rongtao Xu,Changwei Wang,Jiguang Zhang,et al. RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentatio[J]. IEEE Transactions on Image Processing,2023,32(无):1052-1064.
APA Rongtao Xu,Changwei Wang,Jiguang Zhang,Shibiao Xu,Weiliang Meng,&Xiaopeng Zhang.(2023).RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentatio.IEEE Transactions on Image Processing,32(无),1052-1064.
MLA Rongtao Xu,et al."RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentatio".IEEE Transactions on Image Processing 32.无(2023):1052-1064.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。