中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Binary Similarity Few-Shot Object Detection With Modeling of Hard Negative Samples

文献类型:期刊论文

作者Lu, Yue1,3; Chen, Xingyu2; Wu, Zhengxing1,3; Tan, Min1,3; Yu, Junzhi2,3
刊名IEEE TRANSACTIONS ON MULTIMEDIA
出版日期2024
卷号26页码:4805-4818
关键词Few-shot learning object detection computer vision deep learning
ISSN号1520-9210
DOI10.1109/TMM.2023.3326872
通讯作者Yu, Junzhi(junzhi.yu@ia.ac.cn)
英文摘要For few-shot object detection, this work proposes a binary similarity detector (BSDet), which realizes a novel similarity-based multiple binary classification and enhances the feature margin between positive and hard negative samples. First, we revisit the classification paradigm, concluding that multiple binary classification paradigm is more suitable than multi-class classification paradigm for the few-shot task. Hence, we propose a binary similarity head (BSH) by posing the classification task as multiple binary similarity measurements rather than a multi-class prediction. Second, focusing on the hard negative samples, we propose a feature enhancement module (FEM). During training phase, the FEM can push the features of positive and hard negative samples far away from each other, and thus effectively suppresses false positives. Abundant experiments and visualizations indicate that our method achieves state-of-the-art performances on few-shot object detection tasks.
资助项目National Natural Science Foundation of China
WOS研究方向Computer Science ; Telecommunications
语种英语
WOS记录号WOS:001181498100008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/56951]  
专题复杂系统管理与控制国家重点实验室_水下机器人
通讯作者Yu, Junzhi
作者单位1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
2.Peking Univ, Coll Engn, Dept Adv Mfg & Robot, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
3.Chinese Acad Sci, Inst Automat, Lab Cognit & Decis Intelligence Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Lu, Yue,Chen, Xingyu,Wu, Zhengxing,et al. Binary Similarity Few-Shot Object Detection With Modeling of Hard Negative Samples[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2024,26:4805-4818.
APA Lu, Yue,Chen, Xingyu,Wu, Zhengxing,Tan, Min,&Yu, Junzhi.(2024).Binary Similarity Few-Shot Object Detection With Modeling of Hard Negative Samples.IEEE TRANSACTIONS ON MULTIMEDIA,26,4805-4818.
MLA Lu, Yue,et al."Binary Similarity Few-Shot Object Detection With Modeling of Hard Negative Samples".IEEE TRANSACTIONS ON MULTIMEDIA 26(2024):4805-4818.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。