中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
HetGRec: Heterogeneous Graph Attention Network for Group Recommendation

文献类型:期刊论文

作者Song Zhang; Nan Zheng; Danli Wang
刊名IEEE Intelligent Systems
出版日期2023
卷号38期号:1页码:9-18
英文摘要

Due to the popularity of group activities in social media, group recommendation becomes increasingly significant. It aims to pursue a list of preferred items for a target group. Recently, some methods perform graph neural network on the interaction graph. However, these works ignore that the interaction relationships among groups, users, and items are heterogeneous, i.e., two objects can be connected via different paths. In this article, we propose a heterogeneous graph attention network for group recommendation. It first employs meta-path-based random walk with restart to search for strongly correlated neighbors for each node. Then, it performs a dual-hierarchical attention network to extract semantics existing in each meta-path and fuse them to obtain hybrid representation of groups and items. Extensive experiments on three public datasets demonstrate its superiority over the state-of-the-art methods for group recommendation.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57066]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
通讯作者Danli Wang
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Song Zhang,Nan Zheng,Danli Wang. HetGRec: Heterogeneous Graph Attention Network for Group Recommendation[J]. IEEE Intelligent Systems,2023,38(1):9-18.
APA Song Zhang,Nan Zheng,&Danli Wang.(2023).HetGRec: Heterogeneous Graph Attention Network for Group Recommendation.IEEE Intelligent Systems,38(1),9-18.
MLA Song Zhang,et al."HetGRec: Heterogeneous Graph Attention Network for Group Recommendation".IEEE Intelligent Systems 38.1(2023):9-18.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。