HetGRec: Heterogeneous Graph Attention Network for Group Recommendation
文献类型:期刊论文
作者 | Song Zhang![]() ![]() |
刊名 | IEEE Intelligent Systems
![]() |
出版日期 | 2023 |
卷号 | 38期号:1页码:9-18 |
英文摘要 | Due to the popularity of group activities in social media, group recommendation becomes increasingly significant. It aims to pursue a list of preferred items for a target group. Recently, some methods perform graph neural network on the interaction graph. However, these works ignore that the interaction relationships among groups, users, and items are heterogeneous, i.e., two objects can be connected via different paths. In this article, we propose a heterogeneous graph attention network for group recommendation. It first employs meta-path-based random walk with restart to search for strongly correlated neighbors for each node. Then, it performs a dual-hierarchical attention network to extract semantics existing in each meta-path and fuse them to obtain hybrid representation of groups and items. Extensive experiments on three public datasets demonstrate its superiority over the state-of-the-art methods for group recommendation. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57066] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
通讯作者 | Danli Wang |
作者单位 | Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Song Zhang,Nan Zheng,Danli Wang. HetGRec: Heterogeneous Graph Attention Network for Group Recommendation[J]. IEEE Intelligent Systems,2023,38(1):9-18. |
APA | Song Zhang,Nan Zheng,&Danli Wang.(2023).HetGRec: Heterogeneous Graph Attention Network for Group Recommendation.IEEE Intelligent Systems,38(1),9-18. |
MLA | Song Zhang,et al."HetGRec: Heterogeneous Graph Attention Network for Group Recommendation".IEEE Intelligent Systems 38.1(2023):9-18. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。