Nested Collaborative Learning for Long-Tailed Visual Recognition
文献类型:会议论文
作者 | Li J(李俊)3,4![]() ![]() ![]() ![]() |
出版日期 | 2023-03 |
会议日期 | 2022-6 |
会议地点 | New Orleans Ernest N. Morial Convention Center |
英文摘要 | The networks trained on the long-tailed dataset vary remarkably, despite the same training settings, which shows the great uncertainty in long-tailed learning. To alleviate the uncertainty, we propose a Nested Collaborative Learning (NCL), which tackles the problem by collaboratively |
源URL | [http://ir.ia.ac.cn/handle/173211/57095] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 |
通讯作者 | Wan J(万军) |
作者单位 | 1.National Engineering Laboratory for Deep Learning Technology and Application, Beijing, China 2.Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science&Innovation, Chinese Academy of Sciences, Hong Kong, China 3.CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China 4.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China 5.Institute of Deep Learning, Baidu Research, Beijing, China |
推荐引用方式 GB/T 7714 | Li J,Tan ZC,Wan J,et al. Nested Collaborative Learning for Long-Tailed Visual Recognition[C]. 见:. New Orleans Ernest N. Morial Convention Center. 2022-6. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。