Enhancing efficiency and propulsion in bio-mimetic robotic fish through end-to-end deep reinforcement learning
文献类型:期刊论文
作者 | Cui,Xinyu![]() ![]() |
刊名 | Physics of Fluids
![]() |
出版日期 | 2024 |
卷号 | 36期号:3页码:031910 |
关键词 | bio-mimetic robotic fish deep reinforcement learning |
DOI | https://doi.org/10.1063/5.0192993 |
英文摘要 | Aquatic organisms are known for their ability to generate efficient propulsion with low energy expenditure. While existing research has sought to leverage bio-inspired structures to reduce energy costs in underwater robotics, the crucial role of control policies in enhancing efficiency has often been overlooked. In this study, we optimize the motion of a bio-mimetic robotic fish using deep reinforcement learning (DRL) to maximize propulsion efficiency and minimize energy consumption. Our novel DRL approach incorporates extended pressure perception, a transformer model processing sequences of observations, and a policy transfer scheme. Notably, significantly improved training stability and speed within our approach allow for end-to-end training of the robotic fish. This enables agiler responses to hydrodynamic environments and possesses greater optimization potential compared to pre-defined motion pattern controls. Our experiments are conducted on a serially connected rigid robotic fish in a free stream with a Reynolds number of 6000 using computational fluid dynamics simulations. The DRL-trained policies yield impressive results, demonstrating both high efficiency and propulsion. The policies also showcase the agent's embodiment, skillfully utilizing its body structure and engaging with surrounding fluid dynamics, as revealed through flow analysis. This study provides valuable insights into the bio-mimetic underwater robots optimization through DRL training, capitalizing on their structural advantages, and ultimately contributing to more efficient underwater propulsion systems. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57102] ![]() |
专题 | 复杂系统认知与决策实验室_群体决策智能团队 |
推荐引用方式 GB/T 7714 | Cui,Xinyu,Sun,Boai,Zhu,Yi,et al. Enhancing efficiency and propulsion in bio-mimetic robotic fish through end-to-end deep reinforcement learning[J]. Physics of Fluids,2024,36(3):031910. |
APA | Cui,Xinyu.,Sun,Boai.,Zhu,Yi.,Yang,Ning.,Zhang,Haifeng.,...&Wang,Jun.(2024).Enhancing efficiency and propulsion in bio-mimetic robotic fish through end-to-end deep reinforcement learning.Physics of Fluids,36(3),031910. |
MLA | Cui,Xinyu,et al."Enhancing efficiency and propulsion in bio-mimetic robotic fish through end-to-end deep reinforcement learning".Physics of Fluids 36.3(2024):031910. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。