|
作者 | Tingting Liao5,6; Xiaomei Zhang5,6 ; Yuliang Xiu7; Hongwei Yi7; Xudong Liu3; Guo-Jun Qi3,4; Yong Zhang2; Xuan Wang2; Xiangyu Zhu5,6 ; Zhen Lei1,5,6
|
出版日期 | 2023
|
会议日期 | 2023年6月18日-6月22日
|
会议地点 | Canada, Vancouver
|
英文摘要 | This paper presents a framework for efficient 3D clothed
avatar reconstruction. By combining the advantages of the
high accuracy of optimization-based methods and the efficiency
of learning-based methods, we propose a coarseto-
fine way to realize a high-fidelity clothed avatar reconstruction
(CAR) from a single image. At the first stage, we
use an implicit model to learn the general shape in the
canonical space of a person in a learning-based way, and
at the second stage, we refine the surface detail by estimating
the non-rigid deformation in the posed space in an
optimization way. A hyper-network is utilized to generate
a good initialization so that the convergence o f the optimization
process is greatly accelerated. Extensive experiments
on various datasets show that the proposed CAR
successfully produces high-fidelity avatars for arbitrarily
clothed humans in real scenes. The codes will be released in
https://github.com/TingtingLiao/CAR. |
源URL | [http://ir.ia.ac.cn/handle/173211/57137]  |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心
|
作者单位 | 1.CAIR, HKISI, CAS 2.Tencent AI Lab 3.OPPO Research 4.Westlake University 5.University of Chinese Academy of Sciences, Beijing, China 6.MAIS, Institute of Automation, Chinese Academy of Sciences, Beijing, China 7.Max Planck Institute for Intelligent Systems, T¨ubingen, Germany
|
推荐引用方式 GB/T 7714 |
Tingting Liao,Xiaomei Zhang,Yuliang Xiu,et al. High-Fidelity Clothed Avatar Reconstruction from a Single Image[C]. 见:. Canada, Vancouver. 2023年6月18日-6月22日.
|