中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SCOOT: Self-supervised Centric Open-set Object Tracking

文献类型:会议论文

作者Li W(李巍)1,2; Meng WL(孟维亮)1,2; Li BW(李博文)1,2; Zhang JG(张吉光)1,2; Zhang XP(张晓鹏)1,2
出版日期2023-12
会议日期2023-12-12-2023-12-15
会议地点Sydney, Australia
英文摘要

We propose a novel and comprehensive general-purpose object tracking system named Self-supervised Centric Open-set Object Tracking or ‘SCOOT’. Our SCOOT encompasses a self-supervised appearance model, a fusion module for combining textual and visual features, and an object association algorithm based on reconstruction and observation. Through this system, we unlock new possibilities for enhancing the capability ofopen-set object tracking with the aid of language cues in real-world scenarios.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57146]  
专题模式识别国家重点实验室_三维可视计算
通讯作者Meng WL(孟维亮); Zhang JG(张吉光)
作者单位1.Univ. of CAS
2.MAIS, CASIA
推荐引用方式
GB/T 7714
Li W,Meng WL,Li BW,et al. SCOOT: Self-supervised Centric Open-set Object Tracking[C]. 见:. Sydney, Australia. 2023-12-12-2023-12-15.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。