GCC-Speaker: Target Speaker Localization with Optimal Speaker-Dependent Weighting in Multi-Speaker Scenarios
文献类型:会议论文
作者 | Li GJ(李冠君)![]() ![]() ![]() ![]() |
出版日期 | 2023-06 |
会议日期 | 2023年6月 |
会议地点 | 希腊罗得岛 |
英文摘要 | Existing noise-robust and reverberant-robust localization algorithms fail to localize the target speaker when interfering speakers are present. In this paper, we address the problem of localizing only the target speaker in multi-speaker scenarios and propose a target speaker localization algorithm, called GCC-speaker. Specifically, we modify the weighting of the generalized cross-correlation with phase transform (GCC-PHAT) algorithm and propose an optimal speaker-dependent weighting based on a novel localization-related loss function and data-driven training. The speaker-dependent weighting is responsible for guiding the GCC algorithm to obtain the optimal target speaker localization results. As for the loss function, we constrain the estimated GCC angular spectrum and the estimated direction of arrival (DOA) to be close to their ground truth values, respectively. The experimental results show the superiority of GCC-speaker compared to the existing target speaker localization algorithms for different signal-to-interference ratios, reverberation times and array geometries. |
源URL | [http://ir.ia.ac.cn/handle/173211/57268] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Li GJ,Liu WJ,Yi JY,et al. GCC-Speaker: Target Speaker Localization with Optimal Speaker-Dependent Weighting in Multi-Speaker Scenarios[C]. 见:. 希腊罗得岛. 2023年6月. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。