Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model
文献类型:期刊论文
作者 | Zeyu Gao1; Yao Mu4; Chen Chen2![]() ![]() |
刊名 | IEEE Transactions on Intelligent Transportation Systems
![]() |
出版日期 | 2024 |
页码 | 10.1109/TITS.2024.3400227 |
英文摘要 | End-to-end autonomous driving provides a feasible |
源URL | [http://ir.ia.ac.cn/handle/173211/57283] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Yanfeng Lu |
作者单位 | 1.中国科学院自动化研究所 2.清华大学 3.北京科技大学 4.香港大学 |
推荐引用方式 GB/T 7714 | Zeyu Gao,Yao Mu,Chen Chen,et al. Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model[J]. IEEE Transactions on Intelligent Transportation Systems,2024:10.1109/TITS.2024.3400227. |
APA | Zeyu Gao.,Yao Mu.,Chen Chen.,Jingliang Duan.,Ping Luo.,...&Shengbo Eben Li.(2024).Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model.IEEE Transactions on Intelligent Transportation Systems,10.1109/TITS.2024.3400227. |
MLA | Zeyu Gao,et al."Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model".IEEE Transactions on Intelligent Transportation Systems (2024):10.1109/TITS.2024.3400227. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。