FeaCo: Reaching Robust Feature-Level Consensus in Noisy Pose Conditions
文献类型:会议论文
作者 | Gu JM(谷佳铭)1,4; Jingyu Zhang3; Zhang MY(张沐阳)1,4; Meng WL(孟维亮)1,4![]() ![]() ![]() ![]() |
出版日期 | 2023 |
会议日期 | 2023.10.27-2023.11.2 |
会议地点 | Ottawa, Canada |
英文摘要 | Collaborative perception offers a promising solution to overcome |
源URL | [http://ir.ia.ac.cn/handle/173211/57361] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Gu JM(谷佳铭); Xu SB(徐士彪) |
作者单位 | 1.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute ofAutomation, Chinese Academy of Sciences 2.School of Artificial Intelligence, Beijing University of Posts and Telecommunications Beijing, China 3.Academy for Engineering and Technology, Fudan University Shanghai, China 4.School of Artificial Intelligence, University of Chinese Academy of Sciences Beijing, China |
推荐引用方式 GB/T 7714 | Gu JM,Jingyu Zhang,Zhang MY,et al. FeaCo: Reaching Robust Feature-Level Consensus in Noisy Pose Conditions[C]. 见:. Ottawa, Canada. 2023.10.27-2023.11.2. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。