中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Explicit Attention Modeling for Pedestrian Attribute Recognition

文献类型:会议论文

作者Jinyi Fang; Bingke Zhu; Yingying Chen; Jinqiao Wang; Ming Tang
出版日期2023
会议日期2023.7.10-2023.7.14
会议地点Brisbane, Australia
英文摘要

Recent studies on pedestrian attribute recognition have achieved significant improvements by utilizing complex networks and attention mechanisms. However, most of these studies learn the attention map implicitly through the class activation map. In this paper, we propose an explicit attention modeling approach for pedestrian attribute recognition. We construct a mask branch to learn the attention maps with a lightweight feature pyramid network. The features inside the specific mask are then averaged to obtain the scores for attribute recognition. Additionally, we introduce spatial and semantic distillation to improve the consistency of attention masks and attribute scores. Our experiments demonstrate that the proposed explicit attention modeling can achieve state-of-the-art performance on PA100K, PETA, and PAR datasets with negligible parameters.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57372]  
专题紫东太初大模型研究中心
通讯作者Jinyi Fang
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Jinyi Fang,Bingke Zhu,Yingying Chen,et al. Explicit Attention Modeling for Pedestrian Attribute Recognition[C]. 见:. Brisbane, Australia. 2023.7.10-2023.7.14.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。