Explicit Attention Modeling for Pedestrian Attribute Recognition
文献类型:会议论文
作者 | Jinyi Fang; Bingke Zhu![]() ![]() ![]() |
出版日期 | 2023 |
会议日期 | 2023.7.10-2023.7.14 |
会议地点 | Brisbane, Australia |
英文摘要 | Recent studies on pedestrian attribute recognition have achieved significant improvements by utilizing complex networks and attention mechanisms. However, most of these studies learn the attention map implicitly through the class activation map. In this paper, we propose an explicit attention modeling approach for pedestrian attribute recognition. We construct a mask branch to learn the attention maps with a lightweight feature pyramid network. The features inside the specific mask are then averaged to obtain the scores for attribute recognition. Additionally, we introduce spatial and semantic distillation to improve the consistency of attention masks and attribute scores. Our experiments demonstrate that the proposed explicit attention modeling can achieve state-of-the-art performance on PA100K, PETA, and PAR datasets with negligible parameters. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57372] ![]() |
专题 | 紫东太初大模型研究中心 |
通讯作者 | Jinyi Fang |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Jinyi Fang,Bingke Zhu,Yingying Chen,et al. Explicit Attention Modeling for Pedestrian Attribute Recognition[C]. 见:. Brisbane, Australia. 2023.7.10-2023.7.14. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。