SSCFormer: Push the Limit of Chunk-Wise Conformer for Streaming ASR Using Sequentially Sampled Chunks and Chunked Causal Convolution
文献类型:期刊论文
作者 | Wang FY(王方圆)![]() ![]() ![]() |
刊名 | IEEE SIGNAL PROCESSING LETTERS
![]() |
出版日期 | 2024 |
页码 | 421-425 |
英文摘要 | Currently, the chunk-wise schemes are often used to make Automatic Speech Recognition (ASR) models to support streaming deployment. However, existing approaches are unable to capture the global context, lack support for parallel training, or exhibit quadratic complexity for the computation of multi-head self-attention (MHSA). On the other side, the causal convolution, no future context used, has become the de facto module in streaming Conformer. In this letter, we propose SSCFormer to push the limit of chunk-wise Conformer for streaming ASR using the following two techniques: 1) A novel cross-chunks context generation |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57380] ![]() |
专题 | 数字内容技术与服务研究中心_听觉模型与认知计算 |
通讯作者 | Xu B(徐波) |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Wang FY,Xu B,Xu B. SSCFormer: Push the Limit of Chunk-Wise Conformer for Streaming ASR Using Sequentially Sampled Chunks and Chunked Causal Convolution[J]. IEEE SIGNAL PROCESSING LETTERS,2024:421-425. |
APA | Wang FY,Xu B,&Xu B.(2024).SSCFormer: Push the Limit of Chunk-Wise Conformer for Streaming ASR Using Sequentially Sampled Chunks and Chunked Causal Convolution.IEEE SIGNAL PROCESSING LETTERS,421-425. |
MLA | Wang FY,et al."SSCFormer: Push the Limit of Chunk-Wise Conformer for Streaming ASR Using Sequentially Sampled Chunks and Chunked Causal Convolution".IEEE SIGNAL PROCESSING LETTERS (2024):421-425. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。