中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
P-vectors: A Parallel-Coupled TDNN/Transformer Network for Speaker Verification

文献类型:会议论文

作者Wang XY(王溪源)1; Wang FY(王方圆)1; Xu B(徐波)1; Xu L(徐亮)3; Xiao J(肖京)2
出版日期2023
会议日期2023.08.24
会议地点Dublin, Ireland
英文摘要

Typically, the Time-Delay Neural Network (TDNN) and Transformer
can serve as a backbone for Speaker Verification (SV). Both of them have advantages and disadvantages from the perspective of global and local feature modeling. How to effectively integrate these two style features is still an open issue. In this paper, we explore a Parallel-coupled TDNN/Transformer Network (p-vectors) to replace the serial hybrid networks. The p-vectors allows TDNN and Transformer to learn the complementary information from each other through Soft Feature
Alignment Interaction (SFAI) under the premise of preserving local and global features. Also, p-vectors uses the Spatial Frequency-channel Attention (SFA) to enhance the spatial interdependence modeling for input features. Finally, the outputs of dual branches of p-vectors are combined by Embedding Aggregation Layer (EAL). Experiments1 show that p-vectors outperforms MACCIF-TDNN and MFA-Conformer with relative improvements of 11.5% and 13.9% in EER on VoxCeleb1-O.

源URL[http://ir.ia.ac.cn/handle/173211/57381]  
专题数字内容技术与服务研究中心_听觉模型与认知计算
通讯作者Xu B(徐波)
作者单位1.中国科学院自动化研究所
2.平安科技
3.金融一账通
推荐引用方式
GB/T 7714
Wang XY,Wang FY,Xu B,et al. P-vectors: A Parallel-Coupled TDNN/Transformer Network for Speaker Verification[C]. 见:. Dublin, Ireland. 2023.08.24.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。