Learning to Understand Traffic Signs
文献类型:会议论文
作者 | Guo, Yunfei1,2![]() ![]() ![]() ![]() |
出版日期 | 2021-10 |
会议日期 | 2021年10月20日-24日 |
会议地点 | 四川成都 |
关键词 | traffic sign understanding semantic description multi-task learning |
DOI | 10.1145/3474085.3475362 |
页码 | 2076-2084 |
英文摘要 | One of the intelligent transportation system’s critical tasks is to understand traffic signs and convey traffic information to humans. However, most related works are focused on the detection and recognition of traffic sign texts or symbols, which is not sufficient for understanding. Besides, there has been no public dataset for traffic sign understanding research. Our work takes the first step towards addressing this problem. First, we propose a “CASIA-Tencent Chinese Traffic Sign Understanding Dataset” (CTSU Dataset), which contains 5000 images of traffic signs with rich semantic descriptions. Second, we introduce a novel multi-task learning architecture that extracts text and symbol information from traffic signs, reasons the relationship between texts and symbols, classifies signs into different categories, and finally, composes the descriptions of the signs. Experiments show that the task of traffic sign understanding is achievable, and our architecture demonstrates state-of-the-art and superior performance. The CTSU Dataset is available at http://www.nlpr.ia.ac.cn/databases/CASIA-Tencent%20CTSU/index.html. |
会议录出版者 | ACM |
会议录出版地 | New York |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/57394] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
作者单位 | 1.National Laboratory of Pattern Recognition (NLPR), Institute of Automation of Chinese Academy of Sciences, Beijing 100190, China 2.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China 3.CAS Center for Excellence of Brain Science and Intelligence Technology, Beijing 100190, China 4.T Lab, Tencent Map, Tencent Technology (Beijing) Co., Ltd., Beijing 100193, China |
推荐引用方式 GB/T 7714 | Guo, Yunfei,Feng, Wei,Yin, Fei,et al. Learning to Understand Traffic Signs[C]. 见:. 四川成都. 2021年10月20日-24日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。