Visual Traffic Knowledge Graph Generation from Scene Images
文献类型:会议论文
作者 | Guo, Yunfei1,3![]() ![]() ![]() ![]() |
出版日期 | 2023-10 |
会议日期 | 2023年10月2日-6日 |
会议地点 | 法国巴黎 |
DOI | 10.1109/iccv51070.2023.01975 |
页码 | 21604-21613 |
英文摘要 | Although previous works on traffic scene understanding have achieved great success, most of them stop at a lowlevel perception stage, such as road segmentation and lane detection, and few concern high-level understanding. In this paper, we present Visual Traffic Knowledge Graph Generation (VTKGG), a new task for in-depth traffic scene understanding that tries to extract multiple kinds of information and integrate them into a knowledge graph. To achieve this goal, we first introduce a large dataset named CASIATencent Road Scene dataset (RS10K) with comprehensive annotations to support related research. Secondly, we propose a novel traffic scene parsing architecture containing a Hierarchical Graph ATtention network (HGAT) to analyze the heterogeneous elements and their complicated relations in traffic scene images. By hierarchizing the heterogeneous graph and equipping it with cross-level links, our approach exploits the correlation among various elements completely and acquires accurate relations. The experimental results show that our method can effectively generate visual traffic knowledge graphs and achieve state-of-the-art performance. The dataset RS10K is available at http: //www.nlpr.ia.ac.cn/pal/RS10K.html. |
会议录出版者 | IEEE |
会议录出版地 | Piscataway, NJ |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/57396] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
通讯作者 | Liu, Cheng-Lin |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences 2.T Lab, Tencent Map, Tencent Technology (Beijing) Co., Ltd. 3.MAIS, Institute of Automation of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Guo, Yunfei,Yin, Fei,Li, Xiao-Hui,et al. Visual Traffic Knowledge Graph Generation from Scene Images[C]. 见:. 法国巴黎. 2023年10月2日-6日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。