Unified Entropy Optimization for Open-Set Test-Time Adaptation
文献类型:会议论文
作者 | Zhengqing Gao1,2![]() ![]() ![]() |
出版日期 | 2024 |
会议日期 | June 17-21, 2024 |
会议地点 | Seattle WA, USA |
英文摘要 | Test-time adaptation (TTA) aims at adapting a model pre-trained on the labeled source domain to the unlabeled target domain. Existing methods usually focus on improving TTA performance under covariate shifts, while neglecting semantic shifts. In this paper, we delve into a realistic open-set TTA setting where the target domain may contain samples from unknown classes. Many state-of-the-art closed-set TTA methods perform poorly when applied to open-set scenarios, which can be attributed to the inaccurate estimation of data distribution and model confidence. To address these issues, we propose a simple but effective framework called unified entropy optimization (UniEnt), which is capable of simultaneously adapting to covariate-shifted in-distribution (csID) data and detecting covariate-shifted out-of-distribution (csOOD) data. Specifically, UniEnt first mines pseudo-csID and pseudo-csOOD samples from test data, followed by entropy minimization on the pseudo-csID data and entropy maximization on the pseudo-csOOD data. Furthermore, we introduce UniEnt+ to alleviate the noise caused by hard data partition leveraging sample-level confidence. Extensive experiments on CIFAR benchmarks and Tiny-ImageNet-C show the superiority of our framework. The code is available at https://github.com/gaozhengqing/UniEnt. |
会议录出版者 | IEEE/CVF |
源URL | [http://ir.ia.ac.cn/handle/173211/57397] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
通讯作者 | Xu-Yao Zhang |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences 2.MAIS, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Zhengqing Gao,Xu-Yao Zhang,Cheng-Lin Liu. Unified Entropy Optimization for Open-Set Test-Time Adaptation[C]. 见:. Seattle WA, USA. June 17-21, 2024. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。