ESTATE: Expert-Guided State Text Enhancement for Zero-Shot Industrial Anomaly Detection
文献类型:会议论文
作者 | Bingke Zhu2![]() ![]() |
出版日期 | 2024 |
会议日期 | 2024.10.27-2024.10.30 |
会议地点 | Abu Dhabi, UAE |
英文摘要 | The Expert-Guided State Text Enhancement Anomaly Detection (ESTATE) framework addresses the challenges in industrial anomaly detection arising from diverse product categories and limited defective samples. This framework, integrating expert insights through comparative state prompts, leverages two innovative text-guided networks, CLS-Refner and SEG-Refner, enhancing model training. These networks, connected to residual textual features of standard vision-language pre-trained models, focus on amplifying adjectives’ signifcance in text for improved image block and pixel-level alignment. ESTATE’s effectiveness is demonstrated through evaluations on MVTecAD and VisA datasets, achieving AUROC scores of 89.6%/89.6% for classifcation and 95.1%/85.0% for segmentation tasks, alongside setting new benchmarks in F1Max and PRO metrics.The AUC-cls on MVTecAD and VisA demonstrated an enhancement of 5.06% and 8.97%, respectively, compared to the APRIL-GAN approach. |
源URL | [http://ir.ia.ac.cn/handle/173211/57459] ![]() |
专题 | 紫东太初大模型研究中心 |
通讯作者 | Hao Li |
作者单位 | 1.School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, China 2.Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China 3.School of Computer Science and Engineering, Central South University, Hunan, China |
推荐引用方式 GB/T 7714 | Bingke Zhu,Hao Li,Changlin Chen,et al. ESTATE: Expert-Guided State Text Enhancement for Zero-Shot Industrial Anomaly Detection[C]. 见:. Abu Dhabi, UAE. 2024.10.27-2024.10.30. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。