Bilateral Memory Consolidation for Continual Learning
文献类型:会议论文
作者 | Xing Nie3,4![]() ![]() ![]() ![]() ![]() |
出版日期 | 2023-06 |
会议日期 | 2023年6月18日–2023年6月22日 |
会议地点 | Montreal, Canada |
英文摘要 | Humans are proficient at continuously acquiring and integrating new knowledge. By contrast, deep models forget catastrophically, especially when tackling highly long task sequences. Inspired by the way our brains constantly rewrite and consolidate past recollections, we propose a novel Bilateral Memory Consolidation (BiMeCo) framework that focuses on enhancing memory interaction capabilities. Specifically, BiMeCo explicitly decouples model parameters into short-term memory module and long-term memory module, responsible for representation ability of the model and generalization over all learned tasks, respectively. BiMeCo encourages dynamic interactions between two memory modules by knowledge distillation and momentum-based updating for forming generic knowledge to prevent forgetting. The proposed BiMeCo is parameterefficient and can be integrated into existing methods seamlessly. Extensive experiments on challenging benchmarks show that BiMeCo significantly improves the performance ofexisting continual learning methods. For example, combined with the state-of-the-art method CwD [55], BiMeCo brings in significant gains ofaround 2% to 6% while using 2x fewer parameters on CIFAR-100 under ResNet-18. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57462] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
作者单位 | 1.Baidu Inc., China. 2.Centre for Artificial Intelligence and Robotics, HK Institute of Science & Innovation, CAS. 3.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences. 4.School of Artificial Intelligence, University of Chinese Academy of Sciences. |
推荐引用方式 GB/T 7714 | Xing Nie,Shixiong Xu,Xiyan Liu,et al. Bilateral Memory Consolidation for Continual Learning[C]. 见:. Montreal, Canada. 2023年6月18日–2023年6月22日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。