中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Simple and Strong Baseline for Universal Targeted Attacks on Siamese Visual Tracking

文献类型:期刊论文

作者Li, Zhenbang2,3; Shi, Yaya5; Gao, Jin2,3; Wang, Shaoru2,3; Li, Bing2,3; Liang, Pengpeng1; Hu, Weiming2,4
刊名IEEE Transactions on Circuits and Systems for Video Technology
出版日期2022
卷号32期号:6页码:3880-3894
英文摘要

Siamese trackers are shown to be vulnerable to adversarial attacks recently. However, the existing attack methods craft the perturbations for each video independently, which comes at a non-negligible computational cost. In this paper, we show the existence of universal perturbations that can enable the targeted attack, e.g., forcing a tracker to follow the ground-Truth trajectory with specified offsets, to be video-Agnostic and free from inference in a network. Specifically, we attack a tracker by adding a universal translucent perturbation to the template image and adding a fake target, i.e., a small universal adversarial patch, into the search images adhering to the predefined trajectory, so that the tracker outputs the location and size of the fake target instead of the real target. Our approach allows perturbing a novel video to come at no additional cost except the mere addition operations-and not require gradient optimization or network inference. Experimental results on several datasets demonstrate that our approach can effectively fool the Siamese trackers in a targeted attack manner. We show that the proposed perturbations are not only universal across videos, but also generalize well across different trackers. Such perturbations are therefore doubly universal, both with respect to the data and the network architectures. Our code is available at https://github.com/lizhenbang56/SiamAttack.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57499]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
通讯作者Gao, Jin
作者单位1.Zhengzhou University, Zhengzhou, School of Information Engineering, Henan; 450001, China
2.University of Chinese Academy of Sciences, School of Artificial Intelligence, Beijing; 100190, China
3.Institute of Automation, Chinese Academy of Sciences, National Laboratory of Pattern Recognition, Beijing; 100190, China
4.CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, National Laboratory of Pattern Recognition, Beijing; 100190, China
5.University of Science and Technology of China, Hefei, School of Information Science and Technology, Anhui; 230026, China
推荐引用方式
GB/T 7714
Li, Zhenbang,Shi, Yaya,Gao, Jin,et al. A Simple and Strong Baseline for Universal Targeted Attacks on Siamese Visual Tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(6):3880-3894.
APA Li, Zhenbang.,Shi, Yaya.,Gao, Jin.,Wang, Shaoru.,Li, Bing.,...&Hu, Weiming.(2022).A Simple and Strong Baseline for Universal Targeted Attacks on Siamese Visual Tracking.IEEE Transactions on Circuits and Systems for Video Technology,32(6),3880-3894.
MLA Li, Zhenbang,et al."A Simple and Strong Baseline for Universal Targeted Attacks on Siamese Visual Tracking".IEEE Transactions on Circuits and Systems for Video Technology 32.6(2022):3880-3894.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。