中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Differentiable Convolution Search for Point Cloud Processing

文献类型:会议论文

作者Xing Nie4,5; Yongcheng Liu4; Shaohong Chen3; Jianlong Chang2; Chunlei Huo4; Gaofeng Meng1,4,5; Qi Tian2; Weiming Hu4; Chunhong Pan4
出版日期2021-10
会议日期2021年10月10日至2021年10月17日
会议地点Montreal, Canada
英文摘要

Exploiting convolutional neural networks for point cloud  processing is quite challenging, due to the inherent irregular  distribution and discrete shape representation of point  clouds.  To address these problems, many handcrafted convolution  variants have sprung up in recent years.  Though  with elaborate design, these variants could be far from optimal  in sufficiently capturing diverse shapes formed by discrete  points.  In this paper, we propose PointSeaConv, i.e.,  a novel differential convolution search paradigm on point  clouds.  It can work in a purely data-driven manner and  thus is capable of auto-creating a group of suitable convolutions  for geometric shape modeling.  We also propose  a joint optimization framework for simultaneous search of  internal convolution and external architecture, and introduce  epsilon-greedy algorithm to alleviate the effect of discretization  error.  As a result, PointSeaNet, a deep network  that is sufficient to capture geometric shapes at both convolution  level and architecture level, can be searched out  for point cloud processing.  Extensive experiments strongly  evidence that our proposed PointSeaNet surpasses current  handcrafted deep models on challenging benchmarks  across multiple tasks with remarkable margins.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57519]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
作者单位1.Centre for Artificial Intelligence and Robotics, HK Institute of Science & Innovation, CAS.
2.Huawei Cloud & AI.
3.Xidian University.
4.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences.
5.School of Artificial Intelligence, University of Chinese Academy of Sciences.
推荐引用方式
GB/T 7714
Xing Nie,Yongcheng Liu,Shaohong Chen,et al. Differentiable Convolution Search for Point Cloud Processing[C]. 见:. Montreal, Canada. 2021年10月10日至2021年10月17日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。