Soft Contrastive Learning with Q-irrelevance Abstraction for Reinforcement Learning
文献类型:期刊论文
作者 | Liu MS(刘民颂)1![]() ![]() ![]() |
刊名 | IEEE Transactions on Cognitive and Developmental Systems
![]() |
出版日期 | 2023-09 |
卷号 | 15期号:3页码:1463 - 1473 |
DOI | 10.1109/TCDS.2022.3218940 |
英文摘要 | The difference between training and testing environments is a huge challenge to generalizing reinforcement learning (RL) algorithms. We propose a soft contrastive learning with a coarser approximate Q -irrelevance abstraction for RL (SCQRL) to increase RL generalization. Specifically, we specify the coarser approximate Q -irrelevance abstraction as the feature of the state with a theoretical analysis for better generalization ability. We construct a positive and negative sample selection mechanism based on the Q value for contrastive learning to achieve efficient representation learning. Considering the selection error of positive and negative samples, we design soft contrastive learning and combine it with RL in the form of an auxiliary task to propose SCQRL. The generalization experiments on several Procgen environments demonstrate that SCQRL outperforms the excellent generalized RL algorithm. |
源URL | [http://ir.ia.ac.cn/handle/173211/57521] ![]() |
专题 | 复杂系统管理与控制国家重点实验室_深度强化学习 |
通讯作者 | Zhu YH(朱圆恒) |
作者单位 | 1.中国科学院自动化研究所 2.北京航空航天大学 |
推荐引用方式 GB/T 7714 | Liu MS,Li LT,Hao S,et al. Soft Contrastive Learning with Q-irrelevance Abstraction for Reinforcement Learning[J]. IEEE Transactions on Cognitive and Developmental Systems,2023,15(3):1463 - 1473. |
APA | Liu MS,Li LT,Hao S,Zhu YH,&Zhao DB.(2023).Soft Contrastive Learning with Q-irrelevance Abstraction for Reinforcement Learning.IEEE Transactions on Cognitive and Developmental Systems,15(3),1463 - 1473. |
MLA | Liu MS,et al."Soft Contrastive Learning with Q-irrelevance Abstraction for Reinforcement Learning".IEEE Transactions on Cognitive and Developmental Systems 15.3(2023):1463 - 1473. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。