Robust Source-Free Domain Adaptation for Fundus Image Segmentation
文献类型:会议论文
作者 | Li LR(李泠睿)1,2![]() ![]() |
出版日期 | 2024-01 |
会议日期 | 2024-1 |
会议地点 | 美国夏威夷 |
英文摘要 | Unsupervised Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled training data to the target domain with only unlabelled data. It is of significant importance to medical image segmentation because of the usual lack of labelled training data. Although extensive efforts have been made to optimize UDA techniques to improve the accuracy of segmentation models in the target domain, few studies have addressed the robustness of these models under UDA. In this study, we propose a two-stage training strategy for robust domain adaptation. In the source training stage, we utilize adversarial sample augmentation to enhance the robustness and generalization capability of the source model. And in the target training stage, we propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries that enable model self-adaptation without requiring source data. Extensive experimental results on cross-domain fundus image segmentation confirm the effectiveness and versatility of our method. Source code of this study is openly accessible at https://github.com/LinGrayy/PLPB. |
源URL | [http://ir.ia.ac.cn/handle/173211/57533] ![]() |
专题 | 模式识别国家重点实验室_计算生物学与机器智能 |
通讯作者 | Yang G(杨戈) |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Li LR,Zhou YF,Yang G. Robust Source-Free Domain Adaptation for Fundus Image Segmentation[C]. 见:. 美国夏威夷. 2024-1. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。