Towards Zero-Shot Generalization: Mutual Information-Guided Hierarchical Multi-Agent Coordination
文献类型:会议论文
作者 | Zhang Qingyang1,2![]() ![]() |
出版日期 | 2024-06 |
会议日期 | 2024-6 |
会议地点 | 日本 |
关键词 | 强化学习,分层强化学习 |
英文摘要 | Multi-agent systems often face the challenge of adapting to dynamic team composition and variable partial observability, which can hinder the generalization ability of agent policies. This research introduces a novel method, Mutual Information-guided Multi-Agent coordination (MIMA), to address these issues. MIMA utilizes a hierarchical structure that includes a meta-controller, an information extractor, and agents acting as controllers. The meta-controller partitions the team into distinct groups, while the information extractor uses this partition to extract relevant information. The controllers then make decisions based on this information. We propose two objectives based on mutual information to learn individual and group-specific information. The information extractor uses individual information to form inner-group information, addressing the variable partial observability challenge. It also extracts group-specific information to improve the agents' adaptability to scenarios with dynamic team composition. Both types of information guide agents' distributed execution and influence policy updates during centralized training. Our experiments in multi-agent particle environments and StarCraft II micromanagement tasks show that MIMA improves the zero-shot generalization ability by a large margin, demonstrating its effectiveness in handling dynamic team composition and variable partial observability. |
会议录出版者 | IEEE |
源URL | [http://ir.ia.ac.cn/handle/173211/57588] ![]() |
专题 | 数字内容技术与服务研究中心_听觉模型与认知计算 |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学未来技术学院 |
推荐引用方式 GB/T 7714 | Zhang Qingyang,Xu Bo. Towards Zero-Shot Generalization: Mutual Information-Guided Hierarchical Multi-Agent Coordination[C]. 见:. 日本. 2024-6. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。