中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Conditional Diffusion Guided by Part-level Latent for Dental Crown Point Cloud Generation

文献类型:会议论文

作者Ao,Zhang1,2; Zhen,Shen1,3; Jian,Yang1,2; Qihang,Fang1,2; Gang,Xiong1,3; Xisong,Dong1
出版日期2024
会议日期2024-3
会议地点昆明
英文摘要

Due to the scarcity of point cloud datasets in a specific domain, utilizing generative model approaches becomes essential for data augmentation. Diffusion models have demonstrated impressive capabilities in data generation through a guided reverse process. In this work, we employ a reverse process of a Markov chain conditioned on shape latent to progressively generate dental crown point cloud from a noise distribution. We propose to map the global shape latent to a set of partlevel
implicit representations and introduce a cross-attention block to provide geometric structural information for point cloud generation. We conduct a series of experiments on a real dental crown dataset, and the experimental results show certain improvement compared to the baselines, demonstrating the efficacy of our approach. In experiments, we present the capability of our method to generate large-scale dental crown models through unsupervised learning, effectively enriching the existing dental crown dataset.

会议录出版者SPIE
源URL[http://ir.ia.ac.cn/handle/173211/57591]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Zhen,Shen
作者单位1.State Key Laboratory of Multimodal Artificial Intelligence System, Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation, Chinese Academy of Sciences
2.School of Artificial Intelligence, University of Chinese Academy of Sciences
3.Guangdong Engineering Research Center of 3D Printing and Intelligent Manufacturing, Cloud Computing Center, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Ao,Zhang,Zhen,Shen,Jian,Yang,et al. Conditional Diffusion Guided by Part-level Latent for Dental Crown Point Cloud Generation[C]. 见:. 昆明. 2024-3.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。