Neural Parametric Human Hand Modeling with Point Cloud Representation
文献类型:会议论文
作者 | Yang J(杨健)1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2024-06 |
会议日期 | 2024-6-11 |
会议地点 | 泰国普吉岛 |
英文摘要 | Recently, multi-layer perceptron-based implicit representations have achieved remarkable successes in hand modeling. Compared with previous explicit mesh-based representation methods, implicit methods are more compact shape representations. However, it is expensive to obtain explicit geometry surfaces from implicit func tions with Marching Cubes, which limits the real-time performance in surface reconstruction applications. To explore a more effective and efficient hand representation, we present a skeleton-driven method to represent a human hand with a point cloud. To achieve this goal, we propose a Tri-Axis Modeling method to model the motion pattern of the xyz coordinate of a patch of point cloud, and an Order Encoding strategy to construct a parameter-sharing and geometry-disentangled network. These two effective strate gies make our method run in real-time and has super-high fidelity close to implicit methods. Qualitative and quantitative experiments on public datasets demonstrate the efficiency, effectiveness, and robustness of our method against state-of-the-art approaches. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57592] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Wu HY(吴怀宇) |
作者单位 | 1.中国科学院大学人工智能学院 2.中国科学院自动化研究所多模态人工智能系统全国重点实验室 |
推荐引用方式 GB/T 7714 | Yang J,Quan WZ,Shen Z,et al. Neural Parametric Human Hand Modeling with Point Cloud Representation[C]. 见:. 泰国普吉岛. 2024-6-11. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。