中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
V2X-BGN: Camera-based V2X-Collaborative 3D Object Detection with BEV Global Non-Maximum Suppression

文献类型:会议论文

作者Zhang Caiji1,5; Tian Bin1,5; Meng Shi1,5; Qi Shuangying2; Sun Yang4; Ai Yunfeng1; Chen Long3,5
出版日期2024-04
会议日期June 2-5, 2024
会议地点Jeju Island, South Korea
关键词V2X
英文摘要

In recent years, research on Vehicle-to-Everything (V2X) collaborative perception algorithms mainly focuses on the fusion of intermediate features from LiDAR point clouds. Since the emergence of excellent single-vehicle visual perception mod els like BEVFormer, collaborative perception schemes based on camera and late-fusion have become feasible approaches. This paper proposes a V2X-collaborative 3D object detection structure in Bird’s Eye View (BEV) space, based on global non-maximum suppression and late-fusion (V2X-BGN), and conducts experiments on the V2X-Set dataset. Focusing on complex road conditions with extreme occlusion, the paper compares the camera-based algorithm with the LiDAR-based algorithm, validating the effectiveness of pure visual solutions in the collaborative 3D object detection task. Additionally, this paper highlights the complementary potential of camera-based and LiDAR-based approaches and the importance of object to-ego vehicle distance in the collaborative 3D object detection task.

会议录出版者IEEE
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57597]  
专题多模态人工智能系统全国重点实验室
通讯作者Tian Bin
作者单位1.University of Chinese Academy of Sciences(UCAS)
2.Chongqing Iron and Steel Group Mining Co., Ltd.
3.Waytous
4.Hebei University of Engineering, School of Mechanical and Equipment Engineering
5.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Zhang Caiji,Tian Bin,Meng Shi,et al. V2X-BGN: Camera-based V2X-Collaborative 3D Object Detection with BEV Global Non-Maximum Suppression[C]. 见:. Jeju Island, South Korea. June 2-5, 2024.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。